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1. Introduction
It is necessary to develop a reconstruction method of an object, suÆciently consider-

ing behavior of electromagnetic waves. In the previous studies, many iterative methods are
reported[1{3]. They take much time to solve the direct scattering problem repeatedly. Addi-
tionally, if the initial guess of the object is close to the original one, we get the precise pro�le
of the object through many iterations; otherwise fatal fault occurs because of local minimum
problem. In this situation, the keys to solve the problem seem to be how to solve the direct
problem quickly and how to escape from the local minimum points.

On the other hand, non-iterative methods have an advantage to give a solution within a
certain time. Non-iterative methods are also important to give an initial guess also when the
iterative methods are used. There is the famous non-iterative method by Born's approximation,
but it is valid only for quite weak scattering object. Therefore an e�ective non-iterative is desired
to be developed.

In this paper, we introduce an operator which relates the object and the scattered wave.
From its operator equation, we derive a non-iterative method for reconstructing the object.
Numerical examples are shown to investigate the validity of the approach.

2. Formulation
Let us consider reconstruction of a cylindrical inhomogeneous object located in a region

RV in free space from the scattered waves measured in a region RS under E-wave time-harmonic
excitations. The internal characteristics to be reconstructed is de�ned as the object function
o(r) = k2(n2(r)� 1), where k is the wavenumber in free space, and n is the refractive-index of
the object. We denote the scattered wave by us, incident waves by uin and total waves by ut.
These waves and the object function satisfy the well-known integral equations:

us(r) =

Z
RV

G(rjr0)o(r0)ut(r
0)dr0; r 2 RS (1)

ut(r) = uin(r) +

Z
RV

G(rjr0)o(r0)ut(r
0)dr0; r 2 RV (2)

where G is Green's function, and the time factor exp(�j!t) is suppressed.
We introduce the operator T de�ned as

us(r) =

Z
RV

Z
RV

G(rjr00)T (r00jr0)uin(r
0)dr00dr0 (3)

Comparing eq.(3) with eqs.(1) and (2), we obtain the following operator equation.

T (r00jr0) = O(r00jr0) +

Z
RV

Z
RV

O(r00jr1)G(r1jr2)T (r2jr
0)dr1dr2 (4)

where O(r00jr1) satis�es
R
RV

O(r00jr1)u(r1)dr1 = o(r00)u(r00) for any wave function u(r00). We

can see from eqs.(3) and (4) that if T is estimated through eq.(3), then o(r) is reconstructed
from a linear equation (4).

On the basis of the equations, we consider a method for reconstruction. The object
function o(r) is assumed to be expanded by orthogonal functions �l(r) as o(r) =

P
1

l=1 ol�l(r).
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Then we get

O(r00jr0) =
1X
l=1

ol�l(r
00)Æ(r00jr0) (5)

where Æ is the delta function. In general, a certain set of incident waves u
(q)
in (r0) illuminates

the object successively and the scattered waves are measured on a certain point rm. Operating

G(rmjr
00) and u

(q)
in (r0) to eq.(4) and substituting eq.(5) into eq.(4), we getZ

RV

Z
RV

G(rmjr
00)T (r00jr0)u

(q)
in (r0)dr00dr0

=

1X
l=1

ol

hZ
RV

G(rmjr
0)�l(r

0)u
(q)
in (r0)dr0

+

Z
RV

Z
RV

Z
RV

G(rmjr1)�l(r1)G(r1jr2)T (r2jr
0)u

(q)
in (r0)dr1dr2dr

0

i
(6)

Using the relation Æ(r00jr0) =
P

1

l=1 �l(r
00) 1

�l
��l (r

0) with �l =
R
RV

��l (r
0)�l(r

0)dr, we can �nally

reduce eq.(6) into an equation for ol as follows:

Pmq =

1X
l=1

ol

h
�Blmq +

1X
l2=1

(

1X
l1=1

Mml1
�Gll1l2)Cl2q

i
(7)

where

Pmq =

Z
RV

Z
RV

G(rmjr
00)T (r00jr0)u

(q)
in (r0)dr00dr0 (8)

�Blmq =

Z
RV

G(rmjr
0)�l(r

0)u
(q)
in (r0)dr0 (9)

Mml1 =

Z
RV

G(rmjr1)�l1(r1)dr1 (10)

�Gll1l2 =

Z
RV

Z
RV

1

� l1

��l1(r1)�l(r1)G(r1jr2)�l2(r2)dr1dr2 (11)

Cl2q =

Z
RV

Z
RV

1

� l2

��l2(r2)T (r2jr
0)u

(q)
in (r0)dr2dr

0 (12)

where Clq is the equivalent current and satis�es the equation

Pmq =

1X
l=1

MmlClq (13)

Comparing eq.(8) with eq.(3), we can see that Pmq is the measured data. The algorithm to
solve eq.(7) can be summarized as follows:

Step 0 Calculate �B, �G, M. This step can be done in advance because they are independent of
the scattered wave.

Step 1 Calculate C from eq.(13).
Step 2 Align the elements with subscript m; q of eq.(7) in a single column to obtain a matrix

equation. Calculate o from the matrix equation.

In passing, it is worth noting that we can also obtain the equivalent current method[4]
and unrelated illumination method[5] from the operator equation(4) by choosing the operating
functions.

3. Numerical results
We use a con�guration shown in Fig. 1 in the following numerical examples for simplicity.

We assume that the incident waves are plane waves which propagate in Q di�erent directions
and that the complex(amplitude and phase) scattered far-waves are received in M di�erent
directions. That is,

u
(q)
in (r) = exp(�jkiq � r); q = 1; � � � ; Q; G(rmjr) � �

j

4
exp(+jksm � r); m = 1; � � � ;M (14)
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Figure 1: Geometry.

where sm = (cos �m; sin �m); iq = (cos�q; sin�q) are
unit vectors which indicate the direction of observation
and illumination, respectively. The size of the region RV

is set to 2R � 2R, and �l is chosen as a pulse function,
which exists over only l-th small cell which is made by
dividing the region RV vertically and horizontally by L.
Then, the series of l in eqs.(7) and (13) are changed to the
partial sums for l = 1; � � � ; L. Under the above setting,
we can analytically calculate the matrices in eqs.(8){(11).

At �rst, we consider the reconstructions of a cylin-
der of the di�erent radius and di�erent refractive-index.
Figure 2 shows the reconstructed pro�le of a cylinder of
radius 1.0�(� is the wavelength) with di�erent refractive
index, where R = 1:2�; L = 576. In this calculation,
eq.(7) is solved by the truncated singular value decomposition(TSVD), where the truncation
is empirically done. Figure 3 shows the reconstructed pro�le of a cylinder of refractive index
norg = 1:1 with di�erent radius, where R is set 1.2a(a is the radius of the original cylinder) and
L is set proportionately with the area of RV. We can see from the result that our approach
seems applicable for a cylinder with norg � 1:1 if a = 1:0� or with a � 1:0� if norg = 1:1. This
applicability limit is the same as the modi�ed Newton-Kantrovich method[6], which is one of
iterative methods.

Next, we use the Tikhonov regularization(TR) to solve eq.(7), where the regularization
parameter is chosen by the generalized cross-validation method[7]. The reconstructed pro�les
is shown in Fig. 4. We can see that the pro�les is better than that by TSVD. Progress for the
applicability limit is, however, not achieved well.

At last, we consider the reconstruction from noisy scattered waves. Figure 5 shows the
reconstructed pro�les for di�erent SNR. We can manage to see the object even if SNR is 15dB.
Figure 6 shows the root-mean square error of reconstructed pro�le by TSVD and TR. In this
case, TR produces the better pro�le than TSVD when SNR is not low.

4. Conclusion
We have been derived a non-iterative method for reconstruction of a cylinder from an op-

erator equation. Numerical simulation has been done for a lossless cylinder using the truncated
singular value decomposition or using Tikhonov's regularization technique. It shows that our
non-iterative approach is applicable for a cylinder with the same inhomogeneity as the modi�ed
Newton-Kantrovich method. Tikhonov's regularization technique is more useful in calculating
the resultant matrix equation.

We can obtain di�erent methods from the operator equation by choosing the di�erent
operating functions in the same manner. Derivation of an excellent method by operating some
adequate functions is a future work.
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(d) norg = 1:3 � j0:0, radius: 1.0�

Figure 2: Reconstruction of a cylinder with dif-
ferent refractive-index from noiseless scattered
waves by means of TSVD.
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Figure 3: Reconstruction of a cylinder with dif-
ferent radius from noiseless scattered waves by
means of TSVD.
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Figure 4: Reconstruction of a cylinder from
noiseless scattered waves by means of TR.
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(a) norg = 1:1� j0:0, radius: 1.0�, SNR=30dB
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Figure 5: Reconstruction of a cylinder from
noisy scattered waves by means of TR.
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Figure 6: Root-mean-square error of recon-
structed refractive-index pro�le Err for a
cylinder of norg = 1:1� j0:0 and radius 1.0�.


