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1. Introduction

To solving electromagnetic scattering problems, the finite difference time domain (FDTD)
method is one of the potential approaches. Since it is a simple and versatile modeling technique, it is
easier to solve electromagnetic scattering problems, which have the complicating effects of corners,
apertures, and dielectric loading of structures. However, it suffers from a limitation that large
computational resources are required. It is because the cell size in the solution domain is proportional
to the wavelength of the signal under simulation. Therefore, huge number of grid points are required
when a medium or large structure with a high frequency source is simulated. These grid points require
large number of memory to store and lead to long computational time when the traditional Yee’s
FDTD method [1] is used.

In this paper, a wavelet based adaptive gridding [2], which depends on the variation of magnetic
field, is applied to analyze the scattering of a TM wave on a perfectly conducting rectangular cylinder.
Since most of the simulations use a Gaussian pulse or a modulated Gaussian pulse as the excitation,
the magnetic field in most regions of the computational domain are smooth. These regions are over
resolved if a uniform grid is used. Moreover, the regions, which do not contain high frequency
components, can be modeled by a coarse grid. Therefore, the use of adaptive gridding, which
according to the variation of the magnetic field, can reduce the required computational resources.

The wavelet analysis [3] is a powerful method to analyze localized areas of a signal. It can detect
the variation of a signal at any location and scale. According to the information detected by the
wavelet analysis, we can determine the cell size at every location of the domain. The conventional
finite difference is then applied to the non-uniform grid. Moreover, the non-uniform grid is
constructed again after several time steps as the variation of the magnetic field change. Therefore, the
fields inside the solution domain can be modeled by a suitable resolution throughout the whole
simulation.

2. Wavelet based adaptive gridding FDTD method

To construct the non-uniform grid, the magnetic field inside the solution domain is decomposed
into wavelet coefficients first. For example, a magnetic field Hx(x, t0) is decomposed into two sets of
wavelet coefficients, approximation (sk

j) and detail (dk
j), where j is the location parameter and k is the

scale parameter.
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φk
j(x) is the scaling function and ψk

j(x) is the wavelet function of the mother wavelet φ(x) and ψ(x)
, respectively.

The approximation coefficients are simply the average value of the signal over corresponding
intervals (low frequency components). The detail coefficients are the high frequency components of
the signal of corresponding intervals. The decomposition process can be iterated, with successive
approximation being decomposed, so that a signal is broken down into many lower resolutions
components to form a wavelet tree. A two level wavelet decomposition tree of an magnetic signal
with 8 sampling point is shown below.
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The scale parameter (k) reprensents the length of interval in the order of 2k. For example, a
coefficient with k = 1 and j = 1 contains the information from the first two samples, and if k = 2 and j
= 1, the coefficeint contains the information from the first four samples. These coefficients are the
necessary information to refine the cell size locally to different scale, ∆x, 2∆x and 4∆x.

To construct a non-uniform grid, these coefficients are first compared with a prescribed threshold.
If the detail coefficient is smaller than the threshold, the grid density corresponds to that scale can be
applied to that location. For example, if d2

1 is smaller than the threshold, a 4∆x cell can be applied to
location from Ex,1 to Ex,4. Otherwise, d1

1 and d1
2 should be considered. If d1

1 is smaller than the
threshold, a 2∆x cell is applied to the location from Ex,1 to Ex,2.

After several time steps, the non-uniform grid is reconstructed because the variation of the
magnetic field is changed. Therefore, the field insides the solution domain can be modeled by a
suitable resolution throughout the whole simulation.

3. Numerical results

A wavelet based adaptive gridding FDTD method is applied to analyze an electromagnetic
scattering problem. The surface-electric current distribution and near-scattered electric field [4] are
found for the case of a rectangular metal cylinder subject to a TM-polarized excitation (Figure. 1).
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Figure.1 Scattering of a plane wave by a square conducting cylinder

The cylinder has the electrical size k0As=1, where As is the half-width of the side of the cylinder.
The plane wave excitation is TM-polarized, with field components Ez

i, and propagates in the +y
direction, so that it is at normal incidence to one side of the cylinder.

Figure 2(a) shows the comparative result for the uniform Yee’s and adaptive gridding scheme
analyses of the magnitude of the cylinder surface electric-current distribution for this example. The
surface tangential electric current is taken as n × Htan, where n is the unit normal vector at the cylinder
surface. The Htan is the magnetic field parallel to the cylinder surface. Figure 2(b) shows the
comparison of the magnitude of the near-scattered electric field computed by two schemes. The
electric field is tangential to cylinder surface and located at a uniform distance (ha = 5 cells) from the
surface. The difference between uniform Yee’s scheme and adaptive gridding scheme results for
surface electric current is 2% and for near-scattered electric field is 3%. Table.1 shows the
comparison of the computational resources required of two schemes.

(a) (b)
Figure 2. Comparison of uniform gridding and adaptive gridding results
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Average no. of grid points used per time step Computational time (s)
Uniform gridding 36864 14109
Adaptive gridding 22274 9127

Table 1. Comparison of computational resources required

Figure 3 shows the electric field (Ez), when the Gaussian pulse contacted the square-conducting
cylinder, and the grid used at that moment. It can show that the dense grid are followed both
propagated and reflected pulse and remains coarse for other location.

Figure 3 Electric field (Ez) and grid used at t=300∆t

4. Conclusion

The wavelet based adaptive gridding FDTD scheme has been proposed and applied to analyze an
electromagnetic scattering problem. The new scheme can offer about 40 % reduction in grid points
required and 35 % in computational time. The new scheme will be extended to three-dimension
problems and the effect of the reduction in computational resources will be more obvious.
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