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Introduction

In the analysis of complex printed structures, as real life antennas and arrays with radiating

elements of arbitrary shape and beam forming networks, the reduction of the computational ef-

forts mantaining high accuracy in representing the solution is mandatory. The Integral Equation

(IE) - Method of Moments (MoM) approach seems to be the only able to guarantee accurate

results; nevertheless, this task is reached generating very large, densely populated matrices, with

a high condition number, i.e. with a considerable computational cost. In view of solving these

problems, in the last years di�erent alternatives have been proposed. Among these, several

wavelet-based or multiresolution (MR) approaches have appeared in the electromagnetic liter-

ature, mostly motivated by the appealing properties of these functions. However, the intrinsic

di�culties of generating and employing vector MR functions in three-dimensional problems,

have up to now limited their applications to scalar or one-dimensional structures [1]-[3]; a very

small number of wavelet-based analysis of printed circuits exists, in which wavelets are applied

separately to the two cartesian components of the current [4].

The approach recently proposed by these authors [5, 6, 7] leads instead to the introduction

of vector miltiresolution functions that can be de�ned on arbitrary shape geometries; they are

constructed using the concepts of the wavelet representation, yet keeping as much as possible of

the "physical" information contained in the IE-MoM format: the resulting vector basis functions

have a good degree of multiresolution, and generate MoM matrices with a large dynamics. This

allows the use of a diagonal preconditioning to reduce the condition number of the MoM matrix:

as a consequence, the scheme appears to be stable against perturbations, and notably against

sparsi�cation: it means that all the matrix entries below a �xed threshold can be zeroed, keeping

the error on the solution under control. Furthermore, the stability of the linear system makes

the use of iterative solvers, as the Conjugate Gradient (CG), convenient.

Generation of the MR scheme

The starting point in de�ning the generation procedure for the MR basis functions is a consid-

eration on the conditioning of the MoM matrix: since it depends on the singular, quasi-static

behavior of the EFIE [8, 9] and since in vector problems there are two of such terms, it is

convenient to split the current into two parts, a solenoidal (TE) term and a non-solenoidal

(quasi-irrotational, qTM) remainder, that exhibit di�erent properties [8]. These two parts can

be brought into correspondence with scalar functions that (unlike the components of the vector

basis functions usually employed to represent the current) are \isotropically" scalar, i.e. they

show the same degree of regularity in both spatial directions. The TE current is in relation with

a solenoidal potential, piecewise linear, expressed by scalar \pyramidal" functions [8]; when a

rectangular mesh is adopted, as here, they are de�ned on four adjacent cells and the functions

naturally generated from them for the current are the \loop" functions [8, 9]. The non-solenoidal

part of the current is instead related with a piecewise constant quantity, the charge. The MR vec-

tor functions proposed here are generated de�ning �rst multiresolution, two-dimensional scalar

functions for these scalar quantities, and then mapping these ones back onto the current. For

this reason the basis formed by the resulting vector MR functions is called \dual-isoscalar".
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The second issue that has to be taken into account in the generation of the MR functions

is a geometric one, i.e. we are interested in the analysis of structures of arbitrary shapes,

conforming to a grid with rectangular cells, here called \pixels", on which the usual interpolating

vector linear functions are de�ned; the MR vector basis functions are de�ned as grouping of

these \elemental" functions. The arbitrariety of the geometry implies that the MR functions

generation process is divided into two steps, both separately for the TE and the qTM parts

of the current: the �rst step is the so called \domain decomposition", in which the structure

is broken down into a reasonable number of rectangles; they form the coarsest level mesh, on

which the functions connencting the di�erent domains are built. The second step consists in the

generation of the MR functions inside the rectangles: they are separable domains, in which the

two-dimensional scalar functions (for the solenoidal potential or the charge) can be obtained as

tensor product of two one-dimensional scalar sets of functions, de�ned on the two sides of the

rectangle. In the present scheme, on each side a scalar and unsymmetric Haar basis is de�ned,

but other choices can be adopted.

In the following, the generating procedure of the MR functions for the TE and the qTM

currents are summerized: for a more detailed treatment, see [5, 6, 7].

The MR vector TE functions are obtained as a linear combination of the loops. The co-

e�cient of this linear combination are the same derived from the 2D scalar MR functions for

the solenoidal potential: in a rectangular domain, they are given by the tensor product of the

one-dimensional scalar functions de�ned along the two sides. The mesh for the solenoidal cur-

rent and potential is node-based, i.e. in a rectangular mesh there is a number of functions equal

to the number of inner nodes of the mesh. In a one dimension, the pyramids correspond to

triangular interpolating functions: therefore, the one-dimensional scalar functions on each side

of the rectangular domain are given as the sampling of the Haar basis de�ned on a 1D domain

divided in a number of interval equal to the number of inner nodes.

When two neighbouring domains have to be connected, the number of 2D indipendent func-

tions is equal to the number Nb of nodes belonging to both domains: therefore the connecting

functions are given by the tensor product of Nb functions in the directions along the bound-

ary and of one function in the direction across the boundary, de�ned over the 1D domain that

extends across both domains.

In the case of the qTM functions, the mesh is cell-based, and over a NC cell mesh it is possible

to de�ne NC�1 functions for the charge. Inside each rectangle a hierarchy of meshes of di�erent

levels, i.e. meshes with increasing level of resolution j, the �nest with cells coincident with the

pixels, is �rst generated. The cells of the mesh at level j are composed of an integer number of

cells of the mesh of �ner level j+1. At each level, the domain is divided in four subdomains, that

represent the cells of the level. On this four-cell mesh one can de�ne three functions giving total

null charge, that can be directly represented as a current, therefore generating the three MR

vector functions for the current (see [5]) belonging to this level, while the constant charge state is

discarded, since it has no correspondence with the current. The procedure is then hierarchically

repeated inside each subdomain and it stops when a domain with dimension 2 � 2 or N � 1 is

encountered.

As concerns the connecting functions, two di�erent schemes have been investigated: in the

�rst option, the connections are not realized using MR functions, but instead the \star" basis

functions generated through the automatic procedure detailed in [9]. Their presence interrupt

the multilevel spectral localization sequence of the MR scheme, and therefore the introduction

of a \pre-regularization" procedure, consisting in the elimination the NS star functions from the

linear system is necessary before the diagonal preconditioning. The second scheme is complete

MR, and consists in the de�nition of MR scalar functions over a one-dimensional, non-uniform

mesh, which cells are in number and have dimension equal to the rectangular domains. Mapping

back these functions on the two-dimensional mesh, we obtained a two-dimensional representation



for the charge and then for the current. The performances of the two schemes are comparable,

both in terms of the error introduced by the sparsi�cation, and for what concerns the con-

vergence of the iterative solvers. The advantage of using a complete MR scheme is that no

pre-regularization is needed, and this can reduce the computational time in case of complex

structures, for which a high number of domain has to be de�ned.

Numerical example

The MR scheme described above has been applied to the analysis of di�erent con�gurations,

in order to test the capability of MR representations on realistic cases of non-canonical shapes,

and in large dimension problems. Here, we report the results relative to an array of four series

fed stacked-patches (see inset of Fig.1). The number of total unknown is 1302 and the domain

decomposition for the qTM current is called for, resulting in NS = 15 matching functions.

As concerns the conditioning of the MoM matrix, we �nd that the condition number of the

matrix in the rooftop basis is �rft = 650, while in MR basis it is ~�MR = 57, i.e. it has been

reduced of one order of magnitude. The e�ects of the MR functions are shown also in Fig. 1,

where the error on the MoM matrix Z (on the left) and on its inverse Z�1 (on the right) versus

the sparsi�cation (here obtained setting to zero the entries below a �xed threshold) is reported;

the curves show that while the error on Z in the rooftop basis and in MR basis has almost the

same trend, the introduction of the MR scheme makes also the error on Z�1 controllable.
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Figure 1 { Array of four stacked patches (inset). Left: per cent error on the MoM matrix vs. sparsi�cation.

Right: per cent error on the inverse MoM matrix vs. sparsi�cation.

The e�ects of the introduction of the MR functions on the convergence history of the con-

jugate gradient are shown in Fig. 2: from this plot it appears that the MR scheme drastically

reduces the convergence of the CG with a consequent reduction of the computational e�ort. This

e�ort has been evaluated in terms of the oating point operations (ops) necessary to obtain

the solution. In rooftop basis, the linear system is solved using LU, while when MR basis is

adopted, the system is solved with the CG and the number of ops is the total one, i.e. it takes

into account the number of operations for the generation of the MR basis and for the change of

basis. From the plot in Fig. 2 it appears that in the case of sparsi�cation of 90%, that guarantees

an error on Z
�1, i.e. on the current, of the order of 5%, the reduction of ops with respect to

the use of rooftops is almost of one order of magnitude.
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Figure 2 { Array of four stacked patches. Convergence history of the Conjugate Gradient. Inset: number

of ops using rooftop basis or MR basis.
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