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INTRODUCTION

Printed antenna array technology is becoming increasingly popular for its well known advantages. The
electromagnetic modeling of these antennas is often based on the hypothesis of infinite structure that
allows the reduction of the numerical effort to that for solving a single cell of periodicity, by expanding
the field quantities in terms of Floquet waves (FW).

The basic constituent of an efficient full-wave analysis of printed arrays is the array Green’s function
(AGF). This latter may be represented as the field radiated by an array of electric dipoles located on
an infinite grounded dielectric slab, which is globally excited with the same amplitude and phase of
the actual array. The efficient representation of the AGF, which is extremely convenient with respect to
the summation of individual dipole contributions, is the radiation from a superposition of continuous
equivalent FW source distribution extending over the finite array aperture. The asymptotic treatment of
each FW aperture distribution leads to a spatially truncated version of the infinite array FW expansion,
plus FW-modulated diffracted contributions from the edges and vertexes of the array. The free-space
standing AGF has been treated in [2] and [3] for edge and vertex Floquet induced diffracted rays,
respectively. In this paper, the formulation in [2] has been extended to the case of dipoles on a grounded
dielectric slab, and applied to the case of a strip array. This configuration has been considered for the fact
that the AGF is produced by only edge-diffracted rays; vertex diffracted rays, which allows extension to
rectangular array, are presently under investigation.

FORMULATION

The geometry of the structure is presented in Fig. 1. A strip array of phased elementary dipoles is placed
on a grounded dielectric substrate of thickness h and relative permittivity �r. A rectangular reference
system (x; y; z) is introduced with the z-axis perpendicular to the grounded slab and the y-axis along
one of the two edges of the strip array. A spherical coordinate system (r; �; �) is also defined. The
interelement period is denoted by dx along the x-axis, and dy along the y-axis, while the linear phasing
between the element is kx0dx and ky0dy respectively. Let us suppose the strip array be infinitely extended
in the y-direction and characterized by a width w = Ndx, where N is the number of the elementary
dipoles in the x direction. In the following we will also assume that k2

x0 + k2
y0 < k2, so that the array

radiation exhibits maximum in the direction ŝ = 1
k
(kx0x̂ + ky0ŷ �

q
k2 � k2

x0 � k2
y0ẑ). The high-

Fig. 1. Geometry of the structure

frequency description of the field radiated by the strip can be based directly on the solution for the
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canonical problem of a semi-infinite array of dipoles printed on a grounded slab. To this end let us denote
with E(P; x0) the electric field at P = (x; y; z) radiated by an array with semi-infinite extension in the
x-direction and with the edge located at x0. By cancellation, the radiated field Est(P ) by the strip may
be represented as Est(P ) = E(P ; 0) � E(P ;Ndx); as a consequence we only need to derive a suitable
high-frequency expression forE(P ;x0). A general expression ofE(P ;x0) may be obtained as an element
by element summation of the dielectric field radiated by a single dipole on a grounded dielectric slab This
latter field may be expressed as in [5] as a plane wave spectral integral form involving the spectral dyadic
Green’s function G. The double spatial summation expressing the total radiated field by the semi-infinite
array, exhibits a very poor convergence properties, especially when the observation point is far removed
from the edge of the array. This drawback can be overcome interchanging the order of summation and
integration, and restructuring the expression by using the Poisson summation formula [2] thus leading to

E(P ;x0) =
1

2�dy

1X
q=�1

1Z
�1

B(kx)G(kq) � p̂e
�jkq�rdkx (1)

where kq = kxx̂ + kyq ŷ + kzqẑ with kzq =
q
k2 � k2x � k2yq and p̂ = pxx̂ + pyŷ is the unit vector

denoting the direction of the dipoles. The q-sum of the above expression represents the Floquet-wave
expansion of the field along the infinite periodic y-domain, whose wavenumbers are defined as kyq =
ky0 + 2�q

dy
(q = 0;�1; : : :). The function B(kx) = [1 � ej(kx�kx0)dx ]�1 exhibits real poles located on

the real kx-axis at kxp = kx0+
2�p
dy

(p = 0;�1; : : :) which defines the Floquet wave (FW) wavenumbers
along the semi-infinite periodic x-axis. The residue contributions of the integrand in (1) associated to
those FW poles located on the proper Riemann sheet (Im(kzq) < 0) represent propagating (real kzpq)
or evanescent (imaginary kzpq) FWs associated to the infinite array. Furthermore, the spectral dyadic
Green’s function G(kq) may exhibit real and complex poles. The residues of the integrand in (1) at these
poles correspond to surface waves (SW) and leaky waves (LW), excited at the array edge.

UNIFORM ASYMPTOTIC SOLUTION

In order to perform an asymptotic evaluation of the integral (1) the original contour kx is deformed on the
steepest descendant path (SDP) relevant to the saddle point. In this deformation FW, SW, or LW poles
may be captured, so that their residue contributions have to be included, thus leading to

E(P ) =
X
q

E
d

q +
X
p;q

E
FW

pq U(SBpq � ) +
X
i;q

E
SW=LW

iq
U(SBiq � ) (2)

where Ed
q represents the integration on the SDP, and the other terms of the summation are the residues

of the integrand in (1). This, multiplied by Heavyside unit step function U(�) (U(�) = 1 for � >

0; U(�) = 0 for � < 0), terminates the domain of existence of the various waves at pertinent shadow
boundary planes (SBP). These SBP are defined to occur at the observation angle  = SBpq and  = SB

iq

for which the FW poles and SW/LW poles cross the SDP. The edge diffraction mechanism and the related
SB angles for FWs and SWs are depicted in Fig. 2 and 3, respectively. In particular, Fig. 2 shows the
edge diffracted rays induced by q-indexed FWs for the case of phase velocity along the edge greater than
the speed of light (jkyqj < k) (Fig. 2a) and less than the speed of light (jkyqj > k) (Fig. 2b). The shadow
boundary planes are also depicted. Fig. 3 shows the edge diffraction associated to the guided waves. Let
us denote by kzi the z-component of the complex wavenumber which corresponds to the solution of
the slab dispersion equation. Surface wave poles are those corresponding to kziq purely imaginary, and
leaky wave poles correspond to complex kzi. In Fig. 3a the angle �SW

iq
between the real (propagating)

part of the SW vector wavenumber and the edge is such to maintain the projection of such a vector

along ŷ equal to kyq <
p
k2 + jkzij2; then �SW

iq
= cos�1

�
kyq=

p
k2 + jkzij2

�
. When q (or frequency)

is such as kyq >
p
k2 + jkzij2, the surface wave becomes exponentially attenuated along t̂ similarly

as it happens for Fig. 2b. In Fig. 3b, the various geometrical quantities are depicted, which are related
to the direction of the real and imaginary part of each edge diffracted LW vector wavenumber. The



real part of the complex vector wavenumber kLW
iq

propagates in a direction characterized by the angles

�LW
iq

w.r.t. ẑ and �LW
iq

w.r.t. ŷ. These two angles are related to kyq by �LW
iq

= cos�1
�
kyq=Refk

LW

iq
g

�
and �LW

iq
= Refkzig=jRefk

LW

iq
gj. The imaginary part of kLW

iq
is orthogonal to RefkLW

iq
g in order

to satisfy the free-space plane-wave dispersion equation kLW
iq

� k
LW

iq
= k2. Furthermore, Imfk

LW

iq
g

is orthogonal to ŷ, and forms with ẑ the angle �LW
iq

= ImfkLW
ziq

g=jImfkLW
ziq

gj In order to obtain

Fig. 2. (a) Propagating diffracted rays along the surface of the diffraction cone centered at Q q. (b) Evanescent
diffracted field excited by evanescent FWs

Fig. 3. (a) Propagation paths of the surface wave induced by the q-th FW diffraction at the array edge (b) Direction
of real part of the iq-th LW wavenumber. The LW is excited by the q-indexed FWs.

an efficient evaluation of the term E
d
q in (2) it is convenient to extract some polar singularities thus

resulting in an easier integration of the residual part. This extraction is performed via the Wan-der-
Waerden technique. As a consequence, we can express Edq as the sum of two terms Ed

q = I1 + I2. The
first term contains the regularized integrand, which becomes smoothly varying around the saddle point
and may be approximated by its value at the saddle point , thus obtaining

I1 �

s
2�j

ktqt

2
4Dq()�
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w
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wq
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�
��GW

wq

2

�
3
5 e�jktqt (3)

where �GWwq are the singularities relevant to FW, SW and LW poles, and rGWwq are the residues associated
to these poles. FurthermoreDq() is the integrand in (1), except for the exponential term, calculated at its
saddle point, and t is the transverse-to-the-edge direction (Fig. 1). The second term I2 may be expressed
as

I2 =
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where F (y2) is the UTD transition function [1] with �
3�
2

< arg(y2) �
�

2
with argument y2 =

2ktqt sin
2
�
��GW

wq

2

�
.

NUMERICAL EXAMPLE

In order to check the accuracy of the asymptotic solution (2), numerical results have been carried out for
an array of NxM y-oriented electric dipoles on a grounded dielectric slab. For the purpose of calculation
the infinite series in the y-direction has been truncated, thus resulting in M = 101 dipoles. Comparisons
are made with a reference solution which is constructed via the element-by-element summation of the
single dipole source contributions. Fig. 4 shows the y-component of the electric field radiated by the strip
array of dipoles with interelement spacing dx = 0:7� and dy = 1:4�. The dielectric slab is characterized
by the thickness h = 0:2� and the relative permittivity �r = 2:2. Observation are made at the distance
H = 2� from the array plane (inset of Fig. 4), at the central M -section of the array itself. It is found that
the curve relevant to the present approach very well compare to that for reference solution.

Fig. 4. Normalized electric field of a 30x101 array of dipoles. Calculation are made on a line at the distance
H = 2� from the array plane. Element-by-element asymptotics (dashed curve), Global asymptotics (contin-
uous line). Computation times on SUN ULTRASPARC 140 MHz: Element-by-element: 16245 sec; Global
asymptotics: 179 sec
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