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Abstract - To treat weakly singular integrals, analytic 
formulations have been derived for the near-field correction of 
the iterative physical optics applications. They are analytically 
derived for a flat polygon patch based on the Stokes’ theorem 
and numerically verified. 

Index Terms — Weakly singular integrals, Iterative physical 
optics, Near-field correction. 

1. Introduction 

The iterative physical optics (IPO) method has been applied 
to various electromagnetics problems. To improve the 
accuracy of the IPO, the treatment for singular integral kernels 
is essential. The singular integral kernels arise from the 
Green’s function, which are mainly classified as 31 / R  
hypersingular integrals (HSIs), 21 / R  strongly singular 
integrals (SSIs), and 1 / R  weakly singular integrals (WSIs). 
In this work, we focus on the formulations of WSIs. One of 
the most widely used techniques to treat WSIs is the Duffy’s 
method [1]. However, it increases the number of numerical 
computations and is less accurate for near-singular cases.  

In this work, some analytic formulations for WSIs are 
derived for a flat polygon patch based on the Stokes’ theorem 
[2] and also verified numerically.  

2. Near-field Correction for IPO 

The IPO iteratively updates the surface currents on an object 
to calculate the multiple interaction. To update the IPO 
currents following surface integral should be computed. 
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to calculate (1) for the near-singular case, the singularity 
subtraction method is usually used. For example, the second 
term in (1) can be treated as 
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where pN  is the number of the subdivided polygons. The 
surface current can be approximated as constant ,e iJ

r
 on i th 

polygon, and the singular terms are subtracted by the Taylor 

series expansion. The first integral terms can be numerically 
calculated as it is regular. The second singular integral terms 
should be calculated by other means. Among the singular 
integral terms, only WSIs are considered in this work. 

3. Derivation of Formulas for WSIs 

   Based on the Stokes’ theorem for surface integrations over 
a polygon patch, we can formulate following equations [2] 
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 is a vector defined over a surface 
patch SD  in a local coordinate ( , , )u v w , and C  is the 
boundary of SD . The patch plane are assumed to be on uv  
plane and ˆ ˆw n= , i.e. 0un = , 0vn = , and 1wn = . 

The subtracted WSIs in (2) are as follows 
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where the observation points 0 0 0( , , )u v w  is closely located not 
inside but outside of the N -sided source polygon patch whose 
vertices are ( , , )i i i ip u v w  with 1,2, ,i N= L . 
The integrals in (4) can be analytically derived based on (3) 
and integral identities in [3]. For instance, 1I  , 2I , and 4I  can 
be respectively calculated into a closed-form expressions as 
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where 
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with the assumption that 1 mod( , ) 1i i N+ = + .  

4. Numerical Verification 

 To calculate the surface integrals numerically, the Gauss 
quadrature rule is widely used [4]. However, the accuracy is 
deteriorated when the distance between the observation point 
and the source patch is very close. Thus, in this work, we keep 
dividing a source patch into the sub-triangle patches and apply 
the low-order quadrature rule to each sub-triangle patches 
until the numerical value converges with a given certain 
tolerance. 
 A source triangle patch is located at uv  plane where the 
vertices are defined as 1(0.7 ,0.1 ,0)p l l , 2 (0.4 ,0.3 ,0)p l l , and 

3(0.1 ,0.2 ,0)p l l , respectively. And the observation point is 
located at 0 0(0.4 ,0.2 , )p wl l  where 0w  varies from 0.01l  to 
1l . As the number of sub-triangle patches, triN  increases, the 
accuracy of the numerical value improves since the sampling 
points also increases over the triangle patch. Q.P.N  is the total 
number of quadrature points as shown in Fig. 1. The analytic 
solution of 1I  is in accurate agreement with the numerical 
solution with the Gauss quadrature of tri 1024N =  and 

Q.P. 7168N =  even when 0w  is very small. Based on the 
numerical solutions of tri 1024N =  and Q.P. 7168N = , the 
relative errors e  for the analytic formulas of 1I ~ 9I  in (5) are 
calculated (see Fig. 2). The analytic formulas have low 
relative errors less than 410-  and are accurate for any 0w  
values. 

 
Fig. 1. Verification of 1I  with respect to 0w  by applying the Gauss 
quadrature rule for subdivided triangle patches. 

 
Fig. 2. Relative error e  comparison of 1I ~ 9I  with respect to 
numerical solutions of tri 1024N =  and Q.P. 7168N = . 

5. Conclusion 

Some analytic formulas for WSIs are derived based on 
Stokes’ theorem for a flat polygon patch and they are also 
verified numerically. It is not only exact for any near-singular 
case, but also require low computations.  
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