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Abstract – This paper proposes the simple design method to 
reduce amplitude ripples of sidelobe peak revel in equispaced 
N-elements linear arrays by the amplitude slope of 1/N. This 

design is based on Schelkunoff and Elliott method to move 
roots of outside of unit circle in complex plane. The amplitude 
ripples are reduced less than 1dB by the proposed method, 

which is greatly improved rather than the conversational 
method. 

Index Terms — Null-fill, Schelkunoff, Elliott, linear array, 

sidelobe ripple  

1. Introduction 

Recently, the number of small cell is increasing to 

improve throughput and frequency utilization efficiency of 

cellular systems. In small cell coverage area, direct paths 

from base station are dominant under the line of sight 

environment, and necessary to fill nulls in vertical plane 

pattern of base station antennas. 

Then, Rodriguez and Bjorn Lindmark [1, 2] introduced a 

method for the design of null-fill antenna of a linear array. 

The method introduces that null fill in the pattern can be  

created by moving some of the Schelkunoff [3] roots inside 

or outside the unit circle by a fixed ratio the amplitude 

distribution.   In this work, an extension of the Elliott method 

is used in order to reduce null revel with corresponding to 

sidelobe peak revel in equispaced N-elements linear arrays 

by linear amplitude distribution whose gradient equals 1/N.  

2.  Description of method 

Consider an equispaced linear array of N elements along 

the z axis, with d the element spacing and In the excitation of 

the n-th element. Then the array factor is given by (1)  
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where  = kdcos(), k wavenumber, w = e
j

, and wn are the 

roots of the array factor polynomial. Then, we can fill nulls 

by moving some of the roots inside or outside the unit circle 

by a fixed ratio , rewriting the array factor by (2) 
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where n are real [4]. 

In the conventional method, all the n are same for the 

simplicity in the formulation, however we try to change to 

reduce the ripples of sidelobe level. It is easy to obtain by 

decreasing gradually the excitation amplitude of the n-th 

element.After examining various value of  we conclude 

that linear amplitude distribution whose gradient equals 1/N 

is the best one to reduce the ripples of sidelove levels of 

uniform array.. 

3. Numerical examples 

In order to fill nulls, we change  from 0.05 to 0.2 using a 

16-elements equispaced linear array for d = 0.67. In this 

parametric study, directivity patterns are shown in Fig. 1 and 

their magnitude distributions are shown in Fig. 2. It is found 

that the larger decreases null ripples with the drawback of 

sideloe level increase. 

In the next step, we examine other amplitudes as shown in 

Fig. 3, such as, linear, log, cos, and the obtained directivity 

patterns are shown in Fig. 4. This results show the linear 

amplitude slope suppresses null ripple less than 1 dB without 

increasing the sidelobe level. In terms of w plane, the linear 

case can fill nulls, because its roots do not exist on the unit 

circle as shown in Fig. 5. 

To compare null depth by the proposed method with 

conventional one, Fig. 6 shows radiation pattern of three 

cases. The moving roots method (case 1) shows that the 

angle of null correspond to uniform array and reduce null 

revel below 5 dB. On the other hand, the proposed linear 

slope method (case 2) shows that the angle of null is 

different with the pattern without null filling and the ripple is 

suppressed in low level less than 1 dB. 

4. Conclusion 

In equispaced N-elements linear arrays, an extension of the 

Orchard-Elliott method whose amplitude distribution is 

given by linear with gradient 1/N, providing the reduction of 

null revel below 1 dB without degradation of array 

directivity in uniform array. As future task, this proposed 

method is used for base station array antennas actually. 
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Fig.1 Directivity changing   

 

 
Fig.2 Magnitude distribution changing  

 
 

 
Fig.3 Magnitude distribution 

 
 

 
Fig.4 Directivity changing magnitude distribution 

 
 

 
Fig.5 Roots of linear amplitude in w plane 

 
 

 
Fig.6 Comparison case 1 with case 2 in directivity 
 Uniform 
 Case 1 : moving roots of uniform outside 0.1 from unit circle 

 Case 2 : linear magnitude whose gradient equals 1/N 
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