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1. Introduction
A conventional adaptive array antenna system needs the analog circuits, constructed of the filter,

amplifier, down converter, AD converter, etc., for each antenna. Accordingly, it is a problem that the
scale of the analog circuits for the conventional adaptive array antenna system is larger than the one for
the single antenna system.

To solve this problem, the method of switching the antennas for common use of the analog circuits
was introduced by Moriyama et al. [1]. In [1], however, the method was discussed only in the case that
the time of the switch connecting the antennas with the analog circuits is very short. The short switch-on
time causes the degradation of SNR (Signal-to-Noise Ratio). Therefore, we proposed the method for
improving SNR with the longer switch-on time in the past study [2]. Moreover, we produced the method
for further enhancing SNR with the switching order optimization [3]. Nevertheless, this method was
inspected in the condition of the receiving signals from some particular directions.

In this paper, the method of the switching order optimization in the situation of the receiving signal
from all possible directions is examined. Via computer simulation, it is confirmed that the switching
order optimization is effective in our system.

2. Formulation
The adaptive array antenna with the single receiver using time-division multiplexing (TDM-AAA)

switches the antennas for common use of the analog circuit. In Fig.1, the configuration of the TDM-
AAA in this paper is shown. This TDM-AAA is composed of the single circuit except RFBPF1 (Radio
Frequency Band Pass Filter 1) for each antenna.
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Figure 1: Configuration of single receiver using
time-division multiplexing.
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Figure 2: Time-domain waveform of switch con-
trol.
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Consider the TDM-AAA with K elements. Let fk(t) denote the received baseband signal on element
k (k = −µ,−µ + 1,−µ + 2, · · · , µ; µ ≡ K−1

2 ), and also gk(t) the switch control signal which switches the
antennas with connect time τ, cycle time Ts, in Fig.2. Then, X(∆t), which is the received signal vector
of the TDM-AAA, is formulated as follows [3] :

X(∆t) = Φ−1VF(∆t) (1)

X(∆t) ≡
[
x−µ(∆t), · · · , xi(∆t), · · · , xµ(∆t)

]T
(2)

F(∆t) ≡
[
f−µ(∆t), · · · , fk(∆t), · · · , fµ(∆t)

]T
(3)

fk(∆t) ≡ fk(t)
∞∑

∆t=−∞
δ (t − Ts∆t) (4)

Φ−1 ≡ ΨΓ+SΓ− (5)

Ψ ≡ τ

Ts
(6)

S ≡ diag
[
sinc (−µπΨ) , · · · , sinc (nπΨ) , · · · , sinc (µπΨ)

]
(7)

Γ+ ≡



e j 2π
K {(−µ)2} · · · e j 2π

K {(−µ)n} · · · e j 2π
K {(−µ)µ}

...
. . .

...

e j 2π
K {i(−µ)} e j 2π

K {in} e j 2π
K {iµ}

...
. . .

...

e j 2π
K {µ(−µ)} · · · e j 2π

K {µn} · · · e j 2π
K {µ2}


(8)

Γ− ≡



e− j 2π
K {(−µ)2} · · · e− j 2π

K {(−µ)k} · · · e− j 2π
K {(−µ)µ}

...
. . .

...

e− j 2π
K {n(−µ)} e− j 2π

K {nk} e− j 2π
K {nµ}

...
. . .

...

e− j 2π
K {µ(−µ)} · · · e− j 2π

K {µk} · · · e− j 2π
K {µ2}


(9)

where T denotes transpose, δ(t) denotes Dirac delta function, diag[·] denotes diagonal matrix, n is the
degree of harmonics of the switching frequency, and V denotes K × K permutation matrix explained
bellow. The signals with ∆t are the discrete-time signals with period Ts. With p and ũp being the integer

from −µ to µ, consider the vector u ≡ [−µ, · · · , p, · · · , µ]T and also the vector ũ ≡
[
ũ−µ, · · · , ũp, · · · , ũµ

]T
in which the element of u is permuted. Then, V satisfies the following equations

ũ = Vu (10)

vl,m ≡
{

1, if l = ũp and m = p
0, otherwise

(11)

where vl,m is the element of V . When the array is the uniform linear array (ULA) with element spacing
of half a wavelength, F(∆t) is given by

F(∆t) = a(θ) f (∆t) (12)

a(θ) ≡
[
e− jπ(−µ) sin(θ), e− jπ(−µ+1) sin(θ), · · · , e− jπ(µ) sin(θ)

]T
(13)

where a(θ) is the steering vector of the array toward direction θ. And the received power P can be
expressed as

P ≡ E[XH(∆t)X(∆t)] (14)

where E[·] denotes expectation and H denotes Hermitian. From (1), (12), and (14), the received power P
can be calculated.
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3. Method of switching order optimization
In TDM-AAA, in the case that the switch-on time is extended to the limit in order to increase the

received power, the received signals of the antenna elements are mixed [2], [3]. In this case, if the phases
of the mixed signals are close to each other, then the received power of TDM-AAA is improved instead
of being deteriorated. In the past study, we proposed the method of the switching order optimization
that makes the phases of mixed signals close to each other [3]. In this section, the modified method of
improving the received power by the switching order optimization is represented.

If the switching order is according to the antenna number, the correlation vector used in MMSE
(Minimum Mean Square Error) algorithm [4] can be expressed by

rxr = E[F(∆t)r∗(t)] = E[ΦX(∆t)r∗(t)] (15)

where r(t) denotes the reference signal, and ∗ denotes complex conjugate. In (15), the noises are ignored
because of no correlation with the reference signal. Assume that the single desired wave impinges on the
array, and the correlation vector becomes

rxr = ξa(θ) (16)

where ξ is the complex constant. Since the phase differences of the array elements are found from the
steering vector a(θ), they are obtained from the correlation vector of (16).

The optimized switching order to reduce the phase differences of the mixed signals is obtained in
the following steps: 1) Receive the desired signal with the switching in order of the antenna number, and
calculate the correlation vector. 2) Define arbitrarily the first element of the switching order. 3) Compute
the phase delay (or phase advance) of the other array elements. 4) As the next element of the switching
order, select the element of the least phase delay (or phase advance) with the previous element. 5) Repeat
3) and 4) until the switching order is all determined. Once the optimized switching order is determined,
the signals are received again with the optimized switching order and the adaptive algorithm is executed.
With these steps, the calculation amount of the switching order optimization is less than the one with the
steps in [3], while the improvement of the received power of the above-mentioned steps is still the same
as the steps in [3].

4. Evaluation of received power improvement with switching order opti-
mization

In [3], the received power improvement with the switching order optimization was confirmed in
the case that the arrival direction of the desired signal was -70 degree. In this section, we evaluate
the effectiveness of the switching order optimization in the case of all arrival directions of the desired
signal via computer simulation. In the simulation, the ULA had 13 omnidirectional antenna elements
and elements were spaced half a wavelength apart. The switching cycle Ts was 1µsec and no additional
noise was assumed. As the switching order, the optimized order explained in 3. is employed.

Table 1 shows the optimized switching order for each arrival direction from 0 to 90 degrees in 1
degree steps. ”Peak angle” denotes the direction of the maximum received power with the each switching
order except for 0 degree near. The direction of 0 degree means boresight of the array, at which the
received signal phases of all antennas are the same. Therefore, the received power at 0 degree is always
the maximum with any switching order. Because of the symmetry of the optimization results for arrival
directions, the calculation is omitted from -90 to -1 degrees. As a calculating result, we have 24 optimized
switching orders.

All received powers with each optimized switching order are shown in Fig.3. They are normalized
by the received power at 0 degree. It is found that the received power can be optimized for all directions.
In Fig.4, the received power with the ideal switching order about each arrival direction is presented in
solid line. That is the maximum of the received power at each direction in Fig.3. Also the received power
with the conventional switching order (according to the antenna number) is shown in dash-dot line. The
figure indicates that, if the switching order is always optimized ideally, the received power keeps within
only 0.3 dB down from the maximum. In addition, the received power with the ideal switching order
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Table 1: Optimized switching orders for signal arrival directions
order arrival optimized order peak order arrival optimized order peak
no. directions angle no. directions angle
#1 0◦ -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6 - #13 31◦ ∼ 33◦ -6, 5, 1, -3, 4, 0, -4, 3, -1, -5, 6, 2, -2 32◦
#2 1◦ ∼ 9◦ -6, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5 9◦ #14 34◦ -6, 1, -3, 4, 0, -4, 3, -1, 6, -5, 2, -2, 5 33◦
#3 10◦ -6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, 6 10◦ #15 35◦ , 36◦ -6, 4, -3, 0, 3, -4, 6, -1, 2, -5, 5, -2, 1 36◦
#4 11◦ -6, 4, 3, 2, 1, 0, -1, -2, -3, -4, 6, -5, 5 11◦ #16 37◦ ∼ 41◦ -6, -3, 0, 3, 6, -4, -1, 2, 5, -5, -2, 1, 4 38◦
#5 12◦ -6, 3, 2, 1, 0, -1, -2, -3, 6, -4, 5, -5, 4 12◦ #17 42◦ ∼ 46◦ -6, 5, 2, -1, -4, 4, 1, -2, -5, 6, 3, 0, -3 46◦
#6 13◦ , 14◦ -6, 2, 1, 0, -1, -2, 6, -3, 5, -4, 4, -5, 3 14◦ #18 47◦ , 48◦ -6, 2, -1, -4, 4, 1, -2, 6, -5, 3, 0, -3, 5 47◦
#7 15◦ , 16◦ -6, 1, 0, -1, 6, -2, 5, -3, 4, -4, 3, -5, 2 15◦ #19 49◦ ∼ 53◦ -6, -1, 4, -4, 1, 6, -2, 3, -5, 0, 5, -3, 2 50◦
#8 17◦ ∼ 19◦ -6, 0, 6, -1, 5, -2, 4, -3, 3, -4, 2, -5, 1 18◦ #20 54◦ ∼ 56◦ -6, 6, 1, -4, 3, -2, 5, 0, -5, 2, -3, 4, -1 56◦
#9 20◦ , 21◦ -6, 5, -1, 4, -2, 3, -3, 2, -4, 1, -5, 6, 0 21◦ #21 57◦ , 58◦ -6, 1, -4, 3, -2, 5, 0, -5, 2, -3, 4, -1, 6 57◦
#10 22◦ , 23◦ -6, -1, 4, -2, 3, -3, 2, -4, 1, 6, -5, 0, 5 22◦ #22 59◦ ∼ 62◦ -6, 3, -4, 5, -2, 0, 2, -5, 4, -3, 6, -1, 1 61◦
#11 24◦ ∼ 26◦ -6, 3, -2, 2, -3, 6, 1, -4, 5, 0, -5, 4, -1 25◦ #23 63◦ ∼ 65◦ -6, 5, -4, -2, 0, 2, 4, -5, 6, -3, -1, 1, 3 64◦
#12 27◦ ∼ 30◦ -6, -2, 2, 6, -3, 1, 5, -4, 0, 4, -5, -1, 3 27◦ #24 66◦ ∼ 90◦ -6, -4, -2, 0, 2, 4, 6, -5, -3, -1, 1, 3, 5 67◦
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Figure 3: Received powers with switching order
optimization for all directions.
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Figure 4: Received power comparison between
optimized order and antenna number order.

is 3.2 dB higher than the one with the conventional order at the maximum, and 1.6 dB higher on the
average. In this figure, it is represented that the switching order optimization is effective for the received
power improvement.

5. Conclusion
In this paper, we have examined the switching order optimization in TDM-AAA when the receiving

signal is incident on the ULA from all possible directions. After the received signals of the TDM-AAA
were formulated, the process of the switching order optimization was shown. Via computer simulation,
the switching orders were optimized for all directions and the corresponding received powers were cal-
culated. As a result, it has been shown that the switching order optimization is effective for all directions.
In future work, we will prototype the TDM-AAA and evaluate it in actual environments.
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