
On Arrangement of Scattering Points in Jakes’ Model
for Generating i.i.d. Time-Varying MIMO Channels

# Hiroshi Nishimoto, Toshihiko Nishimura, Takeo Ohgane, and Yasutaka Ogawa
Graduate School of Information Science and Technology, Hokkaido University

Kita 14, Nishi 9, Kita-ku, Sapporo 060–0814, Japan
{hn,nishim,ohgane,ogawa}@ist.hokudai.ac.jp

Abstract

For simulating i.i.d. time-varying MIMO channels using multiple Jakes’ rings, it is desired to
generate channels having stable statistics with fewer scatterers. In the conventional Jakes’ model,
its statistical fading property may depend on the initial phase set assigned to scattering points. In
this paper, we present simple and effective conditions on arrangement of scattering points for stable
fading properties. The results show that the proposed arrangement provides higher statistical stability
of time-varying channels than the conventional one does.

1. Introduction
Recently, high data-rate service with high mobility has been one of the growing demands for future

wireless communications. The multiple-input multiple-output (MIMO) system is already the core tech-
nology for some standards to achieve such high data speeds [1]. Thus, there are many opportunities to
use a time-varying MIMO channel model in performance evaluations of MIMO systems [2].

Jakes’ model has been extensively used for simulating time-varying Rayleigh fading with U-shaped
power spectrum [3], [4]. The model can be simply applied to MIMO channels. When each element
of a MIMO channel matrix independently obeys the model, i.e., by using multiple scattering rings, we
can obtain independent and identically distributed (i.i.d.) time-varying MIMO channels, theoretically.
However, statistical validity is achieved with large enough number of scatterers in the rings. Thus,
decreasing the scattering points without consideration on their arrangement may lead statistics fluctuation
depending on the initial phase at each point, as will be shown later.

In this paper, we establish simple and effective conditions on arrangement of scattering points in
MIMO Jakes’ model for sufficient stability of statistics.

2. Simplified Jakes’ Model
We consider a narrow-band MIMO system equipped withNtx transmit (TX) antennas andNrx re-

ceive (RX) antennas. It is assumed that thekth RX antenna, which is surrounded by a scattering ringRkl

with M scattering points, moves with a velocityv as illustrated in Fig. 1. A channelhkl(t) from thelth TX
antenna to thekth RX antenna, which is an element of thekth row andlth column in the MIMO channel
matrix and is affected only by the corresponding scattering ringRkl, is assumed to be time-varying. We
definex- andy-axes as the moving direction and its orthogonal one, respectively. In a baseband system,
the channelhkl(t) is represented as

hkl(t) =

M∑

m=1

akl,m ej{2π fD(cosθkl,m)t+φkl,m}, (1)

whereakl,m, θkl,m, andφkl,m are a received amplitude, an angle of arrival, and an initial phase of themth
scattered wave component, respectively, andfD is the maximum Doppler frequency. The Doppler shift
caused by themth scatterer isfD cosθkl,m. Both θkl,m and−θkl,m contribute to the same Doppler shift
because of cosθkl,m = cos

(−θkl,m
)
. Thus, in Jakes’ model, it is known that scattering points should not be

arranged symmetrically to thex-axis. Here, we define that allM points are distributed only in the range
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Fig. 1: Concept of an i.i.d. time-varying MIMO channel model using multiple Jakes’ rings (Ntx = Nrx = 2).
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Fig. 2: Simplified Jakes’ model.

of 0 <= θkl,m <= π with equal intervalπ/M to facilitate the following discussion, as illustrated in Fig. 2.
Although, strictly speaking, each ring becomes a semicircle under the above angular condition, we still
refer to it as ring hereinafter. In addition, we assumeakl,m = a = 1/

√
M regardless ofk, l, andm for the

sake of simplicity. Under the assumption, we obtain an ergodic channel powerE
[|hkl(t)|2] = 1.

3. Intra-Ring Condition
First, we consider only the scattering ringRkl. When an arbitrary pair of scattering pointsm and

m′ locates iny-axis symmetry, i.e.,θkl,m = π − θkl,m′ , their absolute values of Doppler shift com-
ponents are the same, i.e.,

∣∣∣ fD cosθkl,m

∣∣∣ =
∣∣∣ fD cos

(
π − θkl,m′

) ∣∣∣. In this case, the channel may have
exceptional characteristics depending on the initial phase. For example, let us consider the case of
φkl,m = φkl,m′ = 0. A superposed wave composed of these two scattered waves is expressed as
a ej2π fD(cosθkl,m)t + a e− j2π fD(cosθkl,m)t = 2acos

{
2π fD(cosθkl,m)t

}
. This means that the superposed wave

component does not have its imaginary part, and that the amplitude becomes twice. For another ex-
ample, in the case ofφkl,m = 0 andφkl,m′ = π, it does not have its real part because it is expressed as
j2asin

{
2π fD

(
cosθkl,m

)
t
}
. Thus, they-axis symmetric arrangement of scattering points may cause insta-

bility on statistical fading properties. To avoid such phenomena, the following condition on arrangement
of scattering points should be satisfied

θkl,m , π − θkl,m′ for 1 <= m,m′ <= M. (2)

We define the above condition as the intra-ring condition in the paper.
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Fig. 3: CDF examples of magnitudes for SISO cases.
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Fig. 4: 10%-value CDFs of magnitudes for SISO cases.

4. Inter-Ring Condition
When using multiple scattering rings, arrangement of scattering points across the rings should be

considered. At first, we assume a time-varyingNrx ×Ntx MIMO channelH(t) based onNtxNrx scattering
rings, where all the rings have the same scattering-point structure. The channelH(t) can be decomposed
into M channel componentsH1(t), . . . , HM(t), where themth componentHm(t) is composed ofmth
scattered waves in all theNtxNrx rings, i.e.,hkl,m(t) for k = 1, . . . ,Nrx andl = 1, . . . ,Ntx. In Hm(t), all the
angles of arrival of wave components are the same, i.e.,θkl,m = θm regardless of antenna indicesk andl,
due to the same arrangement. Hence,Hm(t) can be expressed as

Hm(t) = a ej2π fD(cosθm)tΦm, (3)

whereΦm represents anNrx ×Ntx initial phase matrix in which an element of thekth row andlth column
is φkl,m. The above equation implies that regularity of the matrixHm(t) depends on the given initial
phase setΦm. In a case ofφ11,m = φ12,m = · · · = φNrxNtx,m, it is obvious that the matrix is singular,
i.e., rank [Hm(t)] = 1, regardless of time. Of course this is an over-simplified example, and the actual
channel matrixH(t) is superposed byM channel components so that its regularity will be maintained. It
is conjectured, however, that such singular matrix components may cause an unstable property ofH(t).
The simplest way to avoid this is to satisfy the following condition on arrangement of scattering points
across rings defined as the inter-ring condition

θkl,m , θk′l′,m′ for 1 <= k, k′ <= Nrx, 1 <= l, l′ <= Ntx, 1 <= m,m′ <= M, (4)

exceptm = m′ in the case ofk = k′ andl = l′.

5. Numerical Analysis
We simulated time-varying channels based on Jakes’ model for single-input single-output (SISO)

and 2×2 MIMO cases to evaluate the intra- and inter-ring conditions. We setM = 12 for each scattering
ring and prepared 10,000 initial phase sets randomly given. For each initial phase set, we generated
time-varying channels based on (1) and captured 1,000,000 snapshots to obtain its cumulative distribu-
tion function (CDF) of magnitudes and eigenvalues for SISO and MIMO cases, respectively. Figure 3
demonstrates three examples of CDFs for SISO channels yielded by different initial phase sets, where all
the three Jakes’ rings had the same scattering-point structure without the intra-ring condition, i.e.,y-axis
symmetric structure. For comparison, we also show the CDF obtained by complex Gaussian random
process. It it seen in Fig. 3 that the three CDFs do not correspond to that of the Gaussian random process
case and depend on given initial phases. To evaluate the fluctuation, we observed an additional CDF of
10% values (hereinafter we refer to it as 10%-value CDF) for each scattering-point arrangement. Also,
we measured a value spread∆ defined as difference between 1% and 99% values in the 10%-value CDF.

We first evaluate the intra-ring condition for SISO channels by using 10%-value CDFs of the magni-
tudes and their value spreads shown in Fig. 4. Here, “conventional” denotes a case of they-axis symmet-
ric arrangement of scattering points. As a reference, we also show a 10% value for the Gaussian random
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Fig. 5: 10%-value CDFs of first and second eigenvalues for 2× 2 MIMO cases.

process case. It is clear that the conventional arrangement yields various fading properties depending on
the initial phase setting. On the other hand, the arrangement under the intra-ring condition provides more
stable fading properties than the conventional arrangement does. The value spread is effectively reduced
to 0.51 dB from 2.95 dB with the intra-ring condition. We confirmed that, improvement of the stability
under the intra-ring condition is slight even thoughM increases, and thatM > 30 is necessary for the
conventional arrangement to achieve the same stability as the arrangement under the intra-ring condition.

Next, we evaluate the inter-ring condition. Figure 5 presents 10%-value CDFs of the first and sec-
ond eigenvalues for 2× 2 MIMO channels, where both arrangement types “inter-ring condition” and
“conventional” are subject to the intra-ring condition. We can see from the CDFs for the conventional
arrangement that a common arrangement over all the scattering rings causes dependent properties upon
the initial phase setting even if under the intra-ring condition. Furthermore, the difference is larger for the
second eigenvalues. In contrast, the arrangement under the inter-ring condition gives much more stable
eigenvalue properties. With the condition, the value spread for the first eigenvalues is reduced to 0.09 dB
from 0.75 dB, and that for the second eigenvalues is significantly reduced to 0.22 dB from 1.59 dB.

6. Conclusions
We have established simple and effective conditions on scattering-point arrangement in Jakes’ model

for stable fading simulation. We confirmed that, for a single scattering ring, the intra-ring condition is
effective for obtaining stable fading property in the aspect of statistics regardless of the initial phase set-
ting. Moreover, it was shown that arrangement under the inter-ring condition provides fading properties
robust to the given initial phases in a multiple-ring case such as 2×2 MIMO channels. It should be noted
that the proposed inter-ring condition can be effective not only for MIMO flat fading channels but also
for other fading channels, e.g., SISO channels with a few delay paths.
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