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1 Introduction

The constrained interpolation profile (CIP) method is a computational scheme for problems including differ-
ent phases[1], and it provides possibilities to reduce computational resources for solving electromagnetic prob-
lems. The method is based on the upwind scheme with the profiles between two grid points, interpolated in
terms of cubic polynomials which allow us to calculate fields at the next time step with good precision. However,
propagating waves suffer from numerical dispersion, like other schemes.

It is important to obatin the fomula of the numerical dispersion in order to estimate the precision of the com-
putational results. In this paper, the numerical dispersion for the grid-aligned propagation, i.e. the propagation
along the principal grid axes, is derived theoretically, and is then examined numerically. The comparison with
the one of the finite-difference time-domain (FDTD) method is also performed.

2 Numerical dispersion relation of the CIP method

2.1 CIP method of the 3-rd order

We consider a wave propagating to+x-direction with the velocity ofc0. The field value is indicated byf(x, t)
and the derivative is expressed asg(x, t) = ∂f/∂x. Their discretized forms are given byfn

i ≡ f(i ∆x, n ∆t)
andgn

i ≡ g(i ∆x, n ∆t), where∆x and∆t are the spatial and temporal discretization, respectively. Therefore,
the explicit form of the CIP updating scheme is given by the following equations:

fn+1
i = A1f

n
i + A2f

n
i−1 + A3g

n
i + A4g

n
i−1, (1)

gn+1
i = B1f

n
i + B2f

n
i−1 + B3g

n
i + B4g

n
i−1, (2)

where the coefficientsAα andBα are given by

A1 = 1 + 2ξ3 − 3ξ2, A2 = 3ξ2 − 2ξ3, A3 = ∆x(2ξ2 − ξ3 − ξ), A4 = ∆x(ξ2 − ξ3),

B1 =
6

∆x
(ξ − ξ2), B2 = −B1, B3 = 1 + 3ξ2 − 4ξ, B4 = 3ξ2 − 2ξ,

andξ is the so-called the Courant number, and is given byξ = c0 ∆t
∆x .

Consider a plane wave at an angular frequencyω in order to derive the numerical dispersion of the CIP
method:

fn
i = f0 exp(jωt− jk̃x), gn

i = g0 exp(jωt− jk̃x), (3)

wheref0 andg0 are constants, and̃k is the numerical wave number. Substituting Eq. (3) into Eqs. (1) and (2), we
have

ejω∆t

[
f0

g0

]
=

[
A1+A2e

jk̃∆x A3+A4e
jk̃∆x

B1+B2e
jk̃∆x B3+B4e

jk̃∆x

]
•

[
f0

g0

]
= F2 •

[
f0

g0

]
(4)

The dispersion relation is the condition to satisfy the above equation, that is,
∣∣ejω∆tI2 − F2

∣∣ = 0, (5)

whereIm is the identity matrix ofm×m. The equation is written explicitly in the following form.

{exp(jω ∆t)−A1 −A2 exp(jk̃∆x)}{exp(jω ∆t)−B1 −B2 exp(jk̃∆x)}
= {A3 + A4 exp(jk̃∆x)}{B3 + B4 exp(jk̃∆x)}. (6)
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For the analysis of the numerical dispersion, the more important parameters are the sampling density and the
Courant numberξ. The sampling densityD is the number of the discretization per wavelength:D = λ0

∆x = 2π
k0 ∆x ,

whereλ andk0 are the physical wavelength and the physical wavenumber. Introducing the normalized numerical
wavenumber̃kn = k̃/k0, we can rewrite the numerical dispersion relation (6) into

{exp(jξP )−A1 −A2 exp(jk̃nP )}{exp(jξP )−B1 −B2 exp(jk̃nP )}
= {A3 + A4 exp(jk̃nP )}{B3 + B4 exp(jk̃nP )}, (7)

whereP = 2π/D.
The numerical dispersion relation is obtained by findingk̃n = k̃r

n + jk̃i
n which satisfies Eq. (7) for givenξ

andD.

2.2 CIP method of the 5-th order

The straightforward extention of the CIP method is easily obtained by using the second derivatives to in-
terpolate the profiles with the polynomials of the 5-th order. Here, we consider again the fields propagating to
+x-direction. Thus the profile betweeni∆x and(i− 1)∆x is given by

f(x) =
5∑

n=0

an(x− xi)n, (8)

where the coefficientsan’s area0 = fi, a1 = gi, a2 = 1
2hi,

a5 =
6

∆x5
(fi − fi−1)− 3

∆x4
(gi + gi−1) +

1
2∆x3

(hi − hi−1), (9)

a4 =
15

∆x4
(fi − fi−1)− 1

∆x3
(8gi + 7gi−1) +

1
2∆x2

(3hi − 2hi−1), (10)

a3 =
10

∆x3
(fi − fi−1)− 1

∆x2
(6gi + 4gi−1) +

1
2∆x

(3hi − hi−1), (11)

andhi is the second derivative ati∆x.
Thus, the updating equation forfi, gi, andhi are given in the following form.

fn+1
i = A′1f

n
i + A′2f

n
i−1 + A′3g

n
i + A′4g

n
i−1 + A′5h

n
i + A′6h

n
i−1, (12)

gn+1
i = B′

1f
n
i + B′

2f
n
i−1 + B′

3g
n
i + B′

4g
n
i−1 + B′

5h
n
i + B′

6h
n
i−1, (13)

hn+1
i = C ′1f

n
i + C ′2f

n
i−1 + C ′3g

n
i + C ′4g

n
i−1 + C ′5h

n
i + C ′6h

n
i−1, (14)

where the coefficientsA′m, B′
m, C ′m’s are written in Appendix A.

The similar analysis gives the dispersion relation:
∣∣ejξP I3 − F3

∣∣ = 0, where

F3 =




A′1 + A′2e
jk̃nP A′3 + A′4e

jk̃nP A′5 + A′6e
jk̃nP

B′
1 + B′

2e
jk̃nP B′

3 + B′
4e

jk̃nP B′
5 + B′

6e
jk̃nP

C ′1 + C ′2e
jk̃nP C ′3 + C ′4e

jk̃nP C ′5 + C ′6e
jk̃nP


 . (15)

The explicit equation for the dispersion relation is given in Appendix B.

2.3 Numerical results and comparison with the FDTD method

In order to verify the numerical dispersion relation derived in the above sections, we compare the waveforms
computed actually by the CIP method, and the ones calculated by using the numerical dispersion[3].

We define time seriespn
0 andqn

0 (n = 0, 1, · · · ) to be observed as the field value and the derivative at a
reference point. For the CIP computation, this times series is used as the incident wave into the analysis region.
Therefore, atx = ∆x the CIP scheme is written as follows:

fn+1
1 = A1f

n
1 + A2p

n
0 + A3g

n
1 + A4q

n
0 , gn+1

1 = B1g
n
1 + B2q

n
0 + B3f

n
1 + B4p

n
0 . (16)

We can predict the field values and the derivatives excited by the above time series at an arbitrary point, by using
the nurmerical dispersion. The spectrum of the field observed at the pointx can be calculated by multiplying the
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one at the reference point by the propagation factor. Therefore, the time seriespn
i to be observed at the pointi ∆x

can be calculated by

p
{0,1,··· ,m}
i = F−1

[
F

[
p
{0,1,··· ,m}
0

]
e−jk̃ i ∆x

]
, (17)

whereF andF−1 is the operater taking the fast Fourier transform (FFT) and the inverse FFT.
Fig. 1 shows the waveforms observed atx = 5∆x, 300∆x, and900∆x. In the numerical examination, we

choose the Gaussian pulse as the initial time series at the reference pointx = 0:

pi
0 = exp

(
−

{
i ∆t− t0

σ

}2
)

, qi
0 =

2(i ∆t− t0)
c0σ2

exp

(
−

{
i ∆t− t0

σ

}2
)

. (18)

The used values are∆t = ξ∆x/c, ξ =, t0 = ...∆t, σ = ...∆t. The solid lines in Fig. 1 are the results computed
by CIP scheme, and the circles are obtained by the numerical dispersion in Eq. (7) and the FFTs. The two results
agree with each other, which states that the numerical dispersion relation is appropriately derived. Fig. 2 shows
the waveforms calculated by the 5-th CIP and the numerical dispersion relation. The results of the 5-th CIP shows
very excellent conservation of the initial waveform after 300∆x and 900∆x propagation.
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Figure 1: The waveforms calculated from the numerical
dispersion and the results directly by CIP scheme.
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Figure 2: The waveforms for the case of the 5-th CIP.

Fig. 3 shows the numerical phase velocities of CIP and FDTD[2] as a function of the sampling density. The
phase velocity is obtained byω/(k̃r

nk0). The velocities are normalized by the physical velocity. The FDTD
method has the relative error of 1% even forD = 10, while for the CIP method the numerical phase velocity
is very close to the physical one down toD = 2. Fig. 4 shows the numerical attenuation characteristics of CIP
and FDTD. The attenuation per unit cell is given by2πk̃n

i /D. For the case of FDTD, the numerical attenuation
does not exist down to ..., while CIP method has the attenuation for anyD. We can also say that the 5-th CIP has
smaller ficticious attenuation than the 3-rd CIP.
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Figure 3: Normalized numerical phase velocities of
CIP and FDTD.
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Figure 4: Numerical attenuation characteristics of
CIP and FDTD.

3 Conclusion

We have derived the numerical dispersion relation for the CIP methods of the third and the fifth order. The
derived numerical dispersions can predict successfully the waveforms computed by the CIP methods. The nu-
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merical phase velocity and the numerical attenuation are compared with the ones of FDTD method. In the case
of the phase velocity, the CIP methods show very good performance, while it is found that the CIP methods have
the numerical attenuation, and it is not negligible especially for the case of 3rd CIP.
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A The coefficients for the updating equations of the 5-th order CIP

The coefficients appearing in the Eqs.(12)-(14) are given by

A′1 = (1− ξ)3(1 + 3ξ + 6ξ2), A′2 = ξ3(10− 15ξ + 6ξ2), A′3 = −ξ∆x(1− ξ)3(1 + 3ξ),

A′4 = ξ3∆x(1− ξ)(4− 3ξ), A′5 =
ξ2∆x2

2
(1− ξ)3, A′6 =

ξ3∆x2

2
(1− ξ)2,

B′
1 =

30ξ2

∆x
(1− ξ)2, B′

2 = −B′
1, B′

3 = (1− ξ)2(1− 3ξ)(1 + 5ξ),

B′
4 = −ξ2(2− 3ξ)(6− 5ξ), B′

5 = −ξ∆x

2
(1− ξ)2(2− 5ξ), B′

6 = −ξ2∆x

2
(1− ξ)(3− 5ξ),

C ′1 = − 60ξ

∆x2
(1− ξ)(1− 2ξ), C ′2 = −C ′1, C ′3 =

12ξ

∆x
(1− ξ)(3− 5ξ),

C ′4 =
12ξ

∆x
(1− ξ)(2− 5ξ), C ′5 = (1− ξ)(1− 8ξ + 10ξ2), C ′6 = ξ(3− 12ξ + 10ξ2).

B The dispersion relation for CIP of the 5-th order

The explicit equation of the numerical dispersion relation of CIP method of the 5-th oder is given in the
following equation.

3∑
m=0,n=0

D′
mn exp{j(mk̃n + nξ)P} = 0, (19)

whereD′
mn are given by

D30 = ξ9, D21 = −3ξ4(2− 10ξ + 16ξ2 − 8ξ3 + ξ4), D20 = 3ξ4(1− ξ)(2 + 2ξ − 2ξ2 − 2ξ3 + ξ4),

D12 = 3ξ(1− 8ξ + 16ξ2 − 10ξ3 + 2ξ4), D11 = −6ξ(1− ξ)(1− 3ξ − 11ξ2 + 27ξ3 − 11ξ4 − 3ξ5 + ξ6),

D10 = 3ξ(1− ξ)4(1 + 4ξ − 2ξ2 − 2ξ3 + ξ4), D03 = −1, D02 = 3(1− ξ)(1− 2ξ − 2ξ2 + 2ξ3 + 2ξ4),

D01 = −3(1− ξ)4(1− 2ξ − 2ξ2 + 4ξ3 + ξ4), D00 = (1− ξ)9,

and for the other combinations ofm andn, Dmn = 0.
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