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1. Introduction 
 
 In this paper a certain integrodifferential equations are proposed for the solution of EM 
problems with 3D dielectric bounded scatterers. This article can be viewed as an extension of our 
previous work [1]. It is also necessary to point out that Waterman’s [2] and Kyurkchan’s [3] 
methods serve as a background of this work. 
 
2. Differential Formulation 
 

 Suppose that certain EM field with strength 00 HE
rr

,  and time dependence  propagates 
in linear isotropic uniform medium. Let the scatterer bounded with the smooth surface S occupies 
the finite volume of space 

tie ω−

SGG 22 ∪= . Complement of 2G  to entire space  we denote as 3R

2
3

1 GRG /=  ( SGG 11 ∪= ). Interaction of the incident field with an inhomogeneity results in the 
appearance of scattered and interior fields which we denote as 11 HE

rr
,  and 22 HE

rr
, , respectively. We 

shall refer to the properties of the surrounding medium by utilizing script “1” and script “2” will be 
used for denoting the constants of the material filling the body. By means of Maxwell’s equations 
and classical constitutive relations one can show that the fields jj HE

rr
,  (j=1,2) satisfy the uniform 

Helmholtz equations. On the surface S the tangential parts of field vectors must be equated: 

S2S10 EnEEn
rrrrr

×=+× )( , 
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rrrrr
×=+× )( .                                 (1) 

The denotation n
r  corresponds to the unit normal to S pointing outward the volume of the scatterer 

2G . We shall also use the denotation n  that corresponds to the normal pointing inside the body. 
Additionally, the vectors 

ˆ

11 HE
rr

,  must satisfy the Silver – Muller radiation conditions [2]. 
 
3. Stratton-Chu Integrals for Interior and Exterior Field 
 

 The starting point to yield Stratton-Chu representations is the integration of Helmholtz 
equations over the volume jG  in the following way: 0dVgaFkdVgaF
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where jjj HEF
rrr

,≡ ; j=1,2; a
r  is the arbitrary constant vector, rr4rrikg jj

rvrv ′−π′−= )exp(  denotes 
free space Green’s function. By utilizing several identities of vector analysis and Gauss theorem one 
may define the following integral representations: 
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where |)(| rr
rr ′−δ  denotes Dirac delta. Evidently, the exact form of the l.h.s. in (2) depends on the 

concrete location of the observation point r ′
r  in space. Two situations are possible: if 2Gr ∈′

r  then 
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the integral on the l.h.s. presents electric field at location r ′
r , otherwise ( 1Gr ∈′

r ) it will be equal to 
zero. In relation (2) we may carry differential operators of observer to source points as well as take 
curl operator of both sides of the equality. By utilizing the identities )()( 2

1
2r grjrgje

rrrrrr
×∇⋅′≡×∇′⋅′ −  

and )()( 2
1

2r grjrgje
rrrrrrrr

×∇×∇⋅′≡×∇′×∇′⋅′ −  [4] one finds the expression for the radial components of 
EM vectors (magnetic component is only shown for the sake of brevity): 
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where )(][1 ⋅×∇≡⋅ rK
rrr

, ][][ ⋅×∇≡⋅ 12 KK
rrr

. Analogous expressions of field vectors we may get for 
exterior space: 
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4. Integrodifferential System of Equations and Algebraic Problem 
 

 If we desire to yield constitutive integrodifferential equations by means of (3) and (4) that 
allow obtaining unknown EM fields we need suitable operator forms of vectors . For free 
space we choose the following differential relations: 

jj HE
rr

,

,][)/(][],[,][][],[ vKZkiuKvuHuKZikvKvuE 1112111121
rrrrrr

−=+=                      (5) 
where scalar fields u and v are expressed by the Atkinson-Wilcox series [2]. These representations 
satisfy “uniform” Maxwell’s equations (free of volume currents on the r.h.s.) as well as Silver-
Muller radiation conditions. 

Before we choose the operator form of interior field let us speak out the following consideration. 
Physics of the solution requires that analytical representation being used has to be free of 
singularities inside the scatterer. In simplest case, we can get this result by using vector spherical 
harmonics expansion which radial multipliers contain the Bessel function of the first kind . 
Therefore, in analogy with (5) one yields: 
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thereby a and b functions are expressed by means of the series: 
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where ϕθ=ϕθ imm
nnm ePY )(cos),( ||  - spherical functions. Consider equalities (3) and (4). As a first step 

we perform the “exchange” by boundary quantities of EM field in the integrand terms according to 
boundary conditions (2) [3,5]. After that we put the observation point r ′

r  in far zone. Transform 
first equation in (4). It is evident that in this case we have to choose the nonzero magnitude of the 
integral on the l.h.s. since the point r ′

r  is placed in . Furthermore, in far zone we yield 
asymptotic forms of Green’s function and Atkinson-Wilcox series for the radial component of the 

magnetic vector  as follows [1]: 
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1 ef
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⋅−≡  and B denotes Beltrami operator [2]. By substituting latter expressions in (4) we come to 

the integrodifferential equation: 
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Now we consider integral (3) more explicitly. Since observation point we hold in  we need to 
take the zero magnitude of the integral on the l.h.s. in (3) [5]. By utilizing the asymptotic form of 
Green’s function and rendering identical transforms one yields the equation [5]: 
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where r2ki
2 ef

rr
⋅−≡ . Another one pair of integrodifferential equations we may define by the use of 

Stratton-Chu integrals expressing electric vectors. Taking into account the construction of EM field 
operators in the integrand terms one can deduce that equations (7)-(8) present integrodifferential 
system with respect to the unknown functions ),( ϕ′θ′0u , ),( ϕ′θ′0v  [1] and algebraic coefficients 

 and  as well. Analysis of the structure of equations (7) - (8) leads us to the following 
inference: equation (7) presents generalization of the equation defined in [1] and another equation is 
intrinsic to the null-field method [2]. 

nma nmb

Finally integrodifferential system (7)-(8) can be reduced to pure algebraic one by expanding  
and  functions into Fourier series with respect to spherical harmonics basis as it has although 
been done in [1]. Thus we get the algebraic analog of (7) – (8) as: 

0u
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221 wMw
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= , VwM 11
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−=
~ .                                                     (9) 

It should be mentioned that the first equation in (9) coincides with the same in [3]. A few words 
have to be said regarding the solution algorithm that results from the construction of algebraic 
system (9). The second equation in (9) does not contain the vector of unknowns 2w

r , hence, these 
two linear systems can be solved consequently. In fact, in many cases the definition of interior field 
is not obligatory. For instance, in problems with dielectric resonator antennas designs, the quantities 
characterizing their efficiency (radiation patterns, spectral responses) can be found via exterior 
field. Thus, the computational complexity of the algorithm differs slightly compared to a perfectly 
conducting body problem [1]. 
 
5. Validation 
 

The aim which we pursue in this section is to verify equations (7)-(8) by the solution of well-
known canonical problems. We begin with the analytical solution for dielectric sphere excited by 
plane wave. Thus, let linearly polarized plane wave 
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rrrr ⋅= )/(                                           (10) 
propagates in free space along the z axis in positive direction. Let also dielectric sphere of radius R 
is placed in space so that its center coincides with the origins of Cartesian and spherical coordinate 
systems. By utilizing known identities of spherical analysis [6] it is easy to show that the equations 
(9) result in the form: 
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The elements of lTjF
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By utilizing the system of integral identities from [6] it can be easily proved that the system (11) 
results in the well-known Mie solution [6]. 

Let us go in for searching the numerical solutions. In our investigation the diffraction of 
normally incident plane waves on dielectric cubes of different size and permittivity has been 
considered. The results have been compared against known literature data whenever possible. The 
2d and 3d RCS images will be shown during presentation. Herein we study the convergence of the 
algorithm and its time expenses for the following example. Consider diffraction of plane wave on a 
cube having 0.5 meter on a side. In this instance we shall keep frequency unchanged (f≈300 MHz), 
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only refractive index n will be altered within a range 3÷8. The criterion of convergence will be a 
minimum of relative error: ),min(/|| N1N1NNN PPPP −−−=δ , where  denotes radiated power [1]. 
Subscript N shows the highest order of spherical harmonics which we hold in the truncated Fourier 
series. The results are accumulated in Table 1. The columns CPU1 and CPU2 denote the time of 
algebraic system forming and solution, respectively, for different orders N and magnitudes of 
refractive index. As seen, in all the cases system forming time greatly exceeds a solution time, 
though we used most time expensive solver based on Gaussian elimination. Note that algebraic 
system forming time is mainly determined by the calculation time of r.h.s. and l.h.s. integrals in (9). 
This time, obviously, depends on two issues: the number of harmonics which we hold in the 
truncated series and the discretization order of cube surface used in numerical integration. The 
discretization order has been found separately for each case shown in Table 2 in numerical tests; the 
cube surface has been subdivided into square patches. The second order quadrature formula (four 
nodes per patch) has been applied within a patch. The discretization order as a function of refractive 
index is shown in Table II, where the parameter  denotes the number of patch elements along 
arbitrary edge notwithstanding its spatial orientation. The data shown in the tables result in the 
inference: no problems have been observed with the objects having high contrast dielectric filling 
with respect to the environment. 

NP

peN

 
Table 1: Relative errors and time of computation 

Order N / Nδ , % / CPU1, sec / CPU2, sec 
n = 4.0 n = 5.0 n = 6.0 n = 7.0 

10/16.9/33./1. 13/.7/125./4. 16/9.2/376./11. 17/15.7/565./16. 
11/1./47./1.6 14/2.95/164./6. 17/1.6/474./16. 18/10.2/700./22. 
12/.89/65./2.5 15/.52/212./8. 18/1./585./22. 19/.38/857./29. 
13/.06/88./3.8 16/.43/266./11. 19/.25/703./29. 20/.04/1039./39. 

 
Table 2: Discretization order versus refractive index 

peN  n   peN  n   peN  n  
10 3.0  12 5.0  16 7.0 
10 4.0  14 6.0  18 8.0 
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