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1. ABSTRACT

A set. of voluinie integral equations is used to the electromagnetic scattering by a cluster of
identical particles in free space. Each particle is assumned to be homogeneous and anisotropic.
By mecans of the plane wave angular spectrum expansion of electromagnetic ficld inside a homo-
geneous scatterer, novel entire domain basis functions,which are solutions to the wave equation
inside the scatterer, are given and employed as a set of common basis functions. Namely. the
internal electric field of all scatterers are represented by a set of common basis functions with
different. expansion cocfficients. A Galerkin method in the Fourier transform spectral domain,
which gives munerically stable solutions, is applied to convert the volume integral equation to
a linear system of cquations. Instead of fast Fourier transform. the relevant Fourier transforns
are caleulated by a numerical quadrature. The final linear system of equations for N scatterer
can be solved by a N2 vecursive algorithm.

2. INTRODUCTION

In recent years, there has been a growing interest in the study of scattering from a cluster
of homogeneous particles[1-7]. Many practical applications call for the analysis of clustering
effect from a cluster of N identical scatterers[1-4]. Also. in the Monte Carlo simulations of the
effective properties of randoiu discrete scatterers, one actnally calculates the scattering from
a finite number of particles[53-7]. It is noted that in many practical configurations, while the
particles thewselves are not overlapping. their cirenmseribed spheres of particles do overlap(4.7).
Therefore,the powerful T-inatrix method and recwrsive T-matrix algorithm seemn not tractable
yet to be applicable to the scattering of a cluster with overlapping civcumscribed spheres since
T-matrix formulation is based on the scattering field representation outside the circumscribed
sphere of each scatterer.

This article follows up our recent paper[8].which deals with the scattering by a single
scatterer. Here we address the more complex scattering geometry of N ideuntical scatterers
following the esseutial feature of [8]. A system of conpled volume integral egnations for internal
clectric felds of particles are takeu as the starting point. Because the particles are identical, a
conmon set. of entire domain basis functious are employed to represent the internal electric fields
of different. particles by means of different sets of expansion coefficients. The spectral domain
Galerkin method[9-12] are applied to solve the volume integral equations. The reduced linear
systew of equations for N scatterers is of special right-hand-side terms and cau be solved by a
N? reawrsive algorithin{13). The approach of this paper is also strongly related to the method
widely used in the analysis of finite array of rectangnlar conducting patches[11.12]. Instead of
the mathematical detail, the main emphasis is given to the idea. Throughout this paper. time
factor is exp(Fuwt).

3. FORMULATION

Consider scattered fields generated by N homogeneous scatterer located at 7y, ro, ... Ta
illnminated by a incident plane wave E;, ()

E;.lr)=Ey cxp[_.'l.kﬂz(ﬁinc-‘pinc)] (1)
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where Ey is a constant vector. Here and hereafter, we define
(0. ) = cos ¢ sin 67 + sin ¢ sin 87 + cos 02 (2)

with #, §, and £ being nnit vectors in a rectangular coordinate system, While the circumseribed
sphieres of particles may overlap the particles are not overlapping. The scatterers are located
in free space with constant permittivity eg. maguetic permeability pg ;and wavenumber ko =
w /oo - Assume cach homogeneous and anisotropic object with identical constant tensor
perniittivity epg and permeability jigf. where I is the unit dyad. Furthermore, we assune that
the N particles are of identical volume V' and identical swrface S. Here we suppose that the
identical particles may have different. orientation. The source induced in the Ith homogeneous
diclectric scatterer is polavization current J !

J!(r) = jweyle — I) o El(r) (3)

The total electric field can be described Ly the following volume integral equation

N
Eir) = Binetr) + [ Golror') o 3 Kle = 1)« ') (4)
=1

where (ko] A
1 exp[—jholr — 7

Gylr.? Y =([+ 5VV)————F— 5

Gyl )= e ) praT— (5)
is the dyadic Green's function in free space. In order to proceed with the solution of (2).
let. the observation poiut r in (2) is restricted inside each homogeneons anisotropic scatterer
respectively. a set of conpled integral equations is obtained for the unknown electric field E'(r)
inside the th seatterer. Following the method used in the references[14-16], we can express the
electric field inside the homogeneous and anisotropic scatterer as

2 S 4
E(r)= Z/u /0 ddy. sin 61.d60,C,,(By. ) E Oy 1) exp[— 5k, O, d1) - 7]

u=|
2 8 T
=3 3N CunBulbis. i) expl—iknlBir. bies) - 7] 6)
n=1 s=01=0
En(”k- o) = Eur(”k« ¢l\)f + Elly(gk~ ¢A)ﬂ+ E,- (6, ¢k)2 (7)
k(6. d1) = ki (O, S0 BB ) (8)
k(0. ¢1) = cos ¢y sin O, T + sin ¢y sinbyyj + cos 6.2 (9)
272
Cnsl = ﬁ LV.-:LVI kn (le . ¢I\'s )Cu (gkl . ¢k$ ) sin ekl (10)
tm s2m
O = = 1. = —
k= 7 P S (11)

where C,, (8. dr ).k, (601, d1) and E, (6, @) are the undetermined amplitude, wave munber and
wavevector direction of the nth eigenwave in an unbounded homogeneous anisotropic medium{14-
16). respectively; T and S, and W, and W, are the node numbers, and weight coefficients of
munerical quadratures with respect to 8y and . respectively. Morcover, the multi-index nst
can be denoted by a single index m and therefore (8) can be rewritten as

E(r)=ZCmEn1(7‘) (12)

Becse the asswined scatterers are identical, we can use the above conumnon set. of basis functions
to expand the internal electric fields of every seatterer in the scatterer coordinate system as
follows:

E'try=35 CLE.(r-+") =Y C, B, (r)expljkm - 1] (13)
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Takiug into account. the Fowrier expansion of scalar Green's function in a spherical coordinate
systew

expl—jhojr — 7 |] / xp[—jl.:f: (=7
pr— 27_ / / KA dkdey sin 6d0;, gy (14)

:mmltiplying both side of (2) by the following vector [FY,]"(r)(* denotes the complex conjugate)
Fliry = (e=DeEl (r)o' =0/t 0" =1,%5 =0....85:¢ =0.....T  (15)
{r) is given in (12); using the Parseval theorem in the

where the explicit expression of E,,,

spectral domain approach(7-12], we finally obtain

(2 ar)vxx [Chra vt = [V ilvx (16)
where
Vi = /[F,,.] (r) e Eiyelr)dr
= Virlexp(kn 700 = S", = § [ Fiyir)o Buctrdr (1)
[V{\'le] =85 [Vyxi]=5"Le V] (18)
Z"., = / / déy sin OB, F By, ¢A)“’€°"°
.[1 kk] F (8. ) explj(km - mi)(exp[ik,, - rp]) sl # U (19)
A / / depyc sin B dO, . (6. ¢k)“"°‘°
o[l — kE] o F,, (6. 1) + 3 /‘ F;,(r)e F,(r)dr (20)
where
Fo ry=(e—-DeE, (r)m=nst,n=1,2;5=0,....5:t=0,....T (21)
BB i) = /‘ P (r)explikk - rldr (22)

Note that Z,’,’“", and Z," . are of special form[11]. Cousequently, only one sct. of Fourier trans-
form F,, (8. ¢x) of one scatterer[8.15] is needed to compute the above integrals for various
combination of indices ! and ', In other words, we can set up a data file for Fourier transform
F,,(6y. ¢i.) of one scatterer and call the data to produce the matrix elements of N scatterers. In
particular, for a rectangular dielectric parallelepiped[9). a finite circular cylinder and a sphere,
the Fourier transforin (19) can be analytically calculated. In addition, for an arbitrary vohime
V. all the volume integrals can be rednced to smface integrals by virtue of the second Green's
identity. Due to the special right-hand-side terms, we do not solve the (16) by inversing the full
matrix directly. which would need N3 Hoat operation and larger storage. Instead, we introduce
a coutignration dependent. (or $°° dependent) block diagonal matrix as the inverse matrix based
on the representation theory of linear transform(the readers may be referred to [13] for detail)
[13] for detail.). Explicitly, we may let

C'=y'"Meslay (23)

where Y/ represents the Y matrix of the lth scatterer in the N scatterer configuration. which
et be recursively determined as follows[13]:

N
Y.\"+l(.\'+|) ° Sl\’+l.0 = [] _ Y!\'-{-l(l] ° Zz.\'-é-l,i ° Yi(.'\') . Zi(N+l)]-l
i=1
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N
.x.‘\’-}-l(l) . [g:\'+l,0+ ZZN'HJ .‘}_/i(.\') .§i0] (24)
i=1

Zi(N-H) .ii() — Z;(N} . [§i0 +Z.HN+” .x.\’-{-l[:\"-l—l)] .§N+l.0 (25)

4. CONCLUDING REMARKS

The proposed approach makes a full use of the homogeneity of a scatterer and the con-
valution characteristic of the volume integral equation. Probably, this work can be viewed as a
winor extension of spectral domain approach for finite array of rectangular conducting patches
to a cluster of N scattercrs. The great advantage of our approach is that the fowrier integrals
are with respect to finite rogions. Thercfore, instead of the fast Fourier transform, we will use the
novel numerical quadrature applied in [15] to evaluate all the closed surface integrals appearing
in this article. This procedive totally avoids the so called aliasing problem|8] arising from the ap-
plication of fast Fourier transform. As it has already proved for some specific geometry[17.18], a
siceessfnl selection of plane wave basis functions can lead to a converging rate nmch higher than
that of using subdomain basis functions. Another advantage of the present approach is that no
addition theoremn is involved in: the analysis of scattering by N scatterers. In fact.after obtaining
the internal electric field, we can casily get the relevant physical quantities following the method
of [2]. So we believe that this paper makes complements of current approaches.especially for the
complex scattering geometry with overlappingcirenmscribed spheres. Following the procedure
of {13]. this approach including the matrix inversing is equally suitable for arbitrary incident
ficld. And except for thie matrix inversing.this approach can be applied to the scattering by N
different. scatterers provided that each scatterer is homogeneous. The method proposed here
caut also be applied to the elastic wave scattering[14]. The numerical implementation of present
approach is in consideration and will be reported later.
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