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Abstract:

A new space domain closed form for the vector and scalar Green's functions pertaining to a
microstrip geometry is presented. The novel formulation is the sum of an analytic function
singular at the source point, an eventual analytic surface wave contribution and a corrective
double series of Legendre polynomials versus the space variables. The coefficients in the
series are only dependent on the frequency and dielectric properties and are evaluated by
numerical integration of oscillating but fastly decaying integrands.

1. Introduction

The analysis and synthesis of printed circuits components and antennas for microwaves and
millimeterwaves applications is becoming a space domain problem. This is due to the fact
more and more complex printed conductors architectures must be realised when we want to
increase component performances or realise multifunctionality of patch antennas. In this
context classic accurate analysis methods like the Integral Equation Techniques solved by the
Method of Moments require fast and accurate disposability of the Green's functions of the
problem in the space domain. However the latter are easy to formulate only in a transformed
space [1] and only recently [2], [3] they have been fastly and accurately recovered at the
interface air dielectric. That result is all what we need in solving the internal problem, i.e. in
evaluating charge and current densities distributions on the printed conductor. In the present
study we formulate in closed form the Green's functions in any point of the space so as
required in evaluating the diffracted fields in any point of the space around the scatterer.

2. Theoretical and computational results

By referring to the microstrip geometry illustrated in Fig.1, the external problem for printed
circuits can be reduced to the problem of an x-directed horizontal dipole (HED) of current

density J.X and associated charge q5 posed at the origin of a cylindrical coordinate system and

observed at a generic point f =(p,9.z) [1]. If the fields are descended from a vector A and
scalar V potentials, the Green's functions required in the problem are indicated in the
followings:

A0 = [ ax{r.0)x + c¥(r0)z )1
V(F,B) = Gv(?b.) qs

where in the air region it is:

(1)
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Jn is the Bessel function of order n whereas we indicate with:

Drg = ug+ u cth{uh) Dwv = €ug + u th(uh)
ug=VvKk3-kj u=vVk3-k}
ko = w¥}oEg k| = @Y Ho€og,

® = 2xf is the radian frequency and €o, Mo are the permittivity and permeability of the vacuum.
For usual values of relative dielectric constants & and dielectric thickness h, Dy, presents a 0
in kp = Kop so that the integrand in (3), (4) present a pole of residuals R%*, Ry respectively [1].
The inverse Bessel transform in equations (2), (3), (4) can be operated by expressing the
functions Jo,1(kpp) and €2 in uniformly convergent series of Legendre polynomials versus p
and z respectively ( see [3], [4] ) and integrating term by term. Further, a function singular at
the source point ought be put in evidence if we want everywhere convergent the remainder
double series allowing so to write:
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where:
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g = ﬂ, n= &l , im(v) = 1[ ZLVI,M,/Q(V) ( I modified Bessel function )

n
J] = (1 - Jo(kpp\q) - 22 le(kppu)J/ pM . a': p /pM y z=z/ Zm
i=1

Pu. 2y are the maximum p and z values where Green's functions are required whereas ny;, m,,
are proper truncation indices of the series. Complete demonstrations of these formulas will be
given in further works. Here we only point out that the singular function is the one of the free

space for G3* and G, whereas for GZ* it is a novel function combination of a spherical and
cylindrical term. The double series present the useful property of separability versus space
and frequency and converge to an everywhere bounded function with maximum modules at

the source point as depicted in Fig.2 for G}* at f=10 GHz. The computing time for
recovering the Green's functions is determined by the numerical evaluation of the coefficients
Anm(f) ( see Fig.3). Fortunately the integrands in the expressions of the coefficients are fastly
decaying because of the properties of the Bessel functions whereas Ay,(f) are smooth
functions of frequency that consents considerable saving of computer time using interpolation
when a wideband analysis is performed. Further, the truncation indices ny,, m,, in the series
can be reduced by putting in evidence all analytic direct term functions as reported in [3].
Notice that the present inverse transform technique is applicable to situation where the source
dipole is anyhow oriented and located into a multilayered medium. Within the layers without
source no analytic direct terms are present and the Green's functions are smoother, hence,
their double series representation converges much faster. Derivation of the EM fields from
the presented Green' functions expressions will be given in further works.

3. Conclusions

This study presents the first basic step in the solution of the problem of space domain closed
form for the Green's functions pertaining to microstrip geometries. Essentially they are
discovered to be easily expressible like the sum of an analytic function singular at the source
point and a remainder double series that is bounded at the source point and with coefficients
numerically determined versus frequency and dielectric properties. This formulation is
addressed to solve external problems in such a way far and near fields are given by a unique
formulation and practically with the same accuracy.
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Fig.1 : Microstrip Geometry
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