
Application Layer Flow Classification in SDN

Hamid Farhadi, Akihiro Nakao
The University of Tokyo

{farhadi, nakao}@nakao-lab.org

Abstract—Software Defined Networking (SDN) increasingly
attracts more researchers as well as industry attentions. Most
of current SDN packet processing approaches classify packets
based on matching a set of fields on the packet. We propose a
tag-based packet classification architecture to reduce filtering and
flow management overhead.

I. INTRODUCTION

Software Defined Networking (SDN) increasingly attracts
more researchers as well as industry attentions. Last year,
Google announced they start using SDN to improve their in-
ternal network between data centers. An out of the box outline
of SDN roadmap shows significant improvements in network
control and management. Network measurement which is the
key stone of network management has applications beyond
controlling the network such as providing different APIs for
service providers. An example of such a service can be
network measurement specifically for accounting, billing and
charging procedures of the end-user. Such an application layer
classification, in-network, is a resource intensive task. The
key challenge when we deal with software defined network
measurement, is the tradeoff between flexibility (or generality
and programmability) and efficiency. By the flexibility we
mean the ability to measure sophisticated features of the traffic.
Currently using application layer metrics in the form of a
generic measurement solution received minor attention. An
example application of such a measurement can be a generic
usage-based charging as a service. In short, we need a more
flexible measurement which is software defined and written
by service providers customized for their own specific use,
transparent from their internal applications and end-users.

The rest of the paper is organized as follows. Next we
present related work and then we review our system archi-
tecture following by evaluation and finally we conclude the
paper.

II. RELATED WORK

We can divide current state of the art to two main classes
of methods based on the way they filter the target traffic to
measure. Different approaches use variant solutions to initiate,
store and maintain flow information. In the following we
mention two classes of methods that follow different goals
but share their core functionality:

A. Hashing Approach

Most of todays measurement and forwarding solutions
apply a <match,action> rule to every packet passing through
the system. The match section means a pattern or attribute that
the packet includes. After classifying and matching packets

with specific filters, an action is applied to the packet. Exam-
ples of the action can be forward/drop for packet switching
solutions or count for a measurement solution. The latter
action means the counter for that specific matching criterion
should be incremented based on the counter type. A counter
could be a packet counter, a flow size counter or a timer
etc.. In the hashing approach, basically the packet is parsed
to find some special fields targeted by the match rule. In
many cases such as OpenFlow, NetFlow and sFlow, we may
have 10 to 15 distinct fields to be parsed and involved in
the classification. These fields can be located anywhere in
the packet. The main bottleneck of many-field parsing is the
number of memory accesses which grows as the load increases.
Finally, a sort of hashing function is applied to the parsed fields
to generate a key. The key is used to search a list of records
containing flow information. In case of packet forwarding
solutions (e.g., OpenFlow) the table is the forwarding table
and usually implemented using a hashtable data structure with
lookup complexity of O(1).

OpenFlow, DevoFlow [1] and Hedera [2] are a group of
SDN APIs primarily designed to control the forwarding logic
of network efficiently. They place as a logically centralized
control plane in the network and install <match,action>rules
on forwarding devices to manage the network. They are all
designed to work on commodity hardware and they have
some measurement features such as raw packet counters or
approximated counters. DevoFlow supports limited data plane
programmability and all of them support control plane pro-
grammability.

OpenSketch [3] is an SDN API dedicated for network
measurement using sketches. The classification process in this
system is also similar to other hashing approaches. The main
drawbacks of this approach is a) all measurement task should
be reducible to binary sketches otherwise the measurement
should happen at the controller which is not feasible for
real world traffic loads and b) it is installed in a centralized
point and all the measurement happens at a single point and
more importantly c) sketches which receive the output of hash
functions, and the main programmability of the system is
claimed on the sketches while the classification part has limited
programmability. Since any classifier should be implementable
to TCAM binary entries plus hash function. Obviously, any
reducing and application layer classification mechanism (e.g.,
parsing http header) is not a trivial task using hash functions
plus binary TCAM entries. In short, the classification part of
OpenSketch follow the same approach OpenFlow has and is
limited by the same predefined packet fields.

gabacho
タイプライターテキスト
Copyright 2013 IEICE



B. Tagging Approach

This approach received a limited attention from the com-
munity in comparison to hashing method. The major work in
this area is MPLS. MPLS assigns a label to every packet and
use it to forward packets in contrast to IP switching in which
a sophisticated prefix matching decides the destination port of
each packet. MPLS is dependent on a fixed layer-2 protocol.

In addition to old contributions, recently some new require-
ments motivate researchers to revisit the same idea. Open-
Tag [4] is a slicing mechanism for network virtualization that
supports both performance and security isolation. In OpenTag,
the user injects a slice ID tag per packet that denotes which
slice the packet belongs to.

LIPSIN[5] is a forwarding platform using source routing
method for publish/subscribe networks. The whole path a
packet should pass through (i.e., virtual link), is encoded using
some hash functions in a fixed-sized label within the packet.

III. SYSTEM ARCHITECTURE

In this section we discuss the proposed architecture in
details. Figure 1 illustrates the top level system architecture.
Before explaining our method, we explain our assumptions
about the environment.

The main assumption is that we are deploying our system
in a software defined network that is already virtualized. The
service provider rents a slice from infrastructure provider and
has the ability to modify all SDN routing and switching
logic within its own slice. The user joining process is simply
connecting and authenticating on a switch at the edge of
the network. This process is already implemented in many
networks using tunnels and authentication protocols such as
802.1x port authentication.

There are two types of contents in the service provider
domain that an end-user can access: paid and free; The
system distinguishes and meters the amount of access to paid
content and report it to the financial management system of
the corresponding slice for each end-user. For simplicity we
focus on pre-paid charging model of Online Charging Systems.
That is, each end-user has an account and deposit money. As
s/he use paid content, the system measures and reduces the
equivalent charge from the account. When the account balance
reaches zero, the system denies user to access paid account.

The network has two edges: source edge and destination
edge. The former means the switch that connects the applica-
tion server to the network. Destination edge means where the
packet leaves the network and it is the same switch in which
end-user authentication happens.

When an end-user accesses to a paid content, packets
including the paid content flow in the network from the source
edge. The source edge switch classifies packets carrying a
paid value and puts a Value Tag (vTag) on every packet. The
classification is an application layer classification that distin-
guishes among applications with different payment criterion.
Contents with different charging policy receive different vTags.
Therefore, every vTag type represents a class of content with
the same metering criteria. After inserting appropriate vTags
to related classes of packets, the regular network routing and

Meter	  

Paid	  
Content	   Free	  

Content	  

End-‐User	  

Source	  Edge	  

Des7na7on	  Edge	  

Insert	  vTag	  

Flow	   Dest.	  VM	  

VM1	  Tag1	  

Forwarding	  Table	  

Tag2	   VM2	  

.	  .	  .	  

Fig. 1. System Architecture

switching algorithms transmits the packet to the destination
edge. The switch at the destination edge (i.e., the Meter in the
figure) checks the vTag and depending on the user session,
updates corresponding metering values of the end-user. Then
removes the vTag from the packet and let it leave the network
for destination. Metering values are count down counters that
are fetched by the edge switch from slice financial management
system once the user logs in. Different slices have different
instances of financial management system that take care of
their own user accounts. When the user is authenticating,
relevant metering parameters are fetched by the authenticating
edge switch.

Figure 1 indicates the forwarding table at the destination
edge switch. The forwarding table has two columns: flow iden-
tifier and destination port. We use tags as the flow identifier.
In our scenario, the network is sliced using tags on the packet.
The vTag is an additional tag to slice ID tag which both
can be combined in one tag. The second column which is
the destination VM means to which switch virtual machine
(VM) the packet should be forwarded. Since the switch HW
is virtualized, each slice has its own switch VM and packets
carrying slice ID tag, go to the corresponding switch VM
where the switching and metering happens.

IV. EVALUATION

As the evaluation we show the difference between hashing
approach and tagging approach with network-wide view and
conclude that there is a considerable difference in resource
usage between these two approaches. Then we argue we
can exploit such a processing resource for application layer
classification.

Our evaluation and all calculations as well as projections
diagrams are based on a previous work in [6] which is offload-
ing classification feature of OpenFLow to network interface
card armed with an embedded hardware classifier. Recent
NICs such as those with an Intel 82559 10GbE controller
are able to classify traffic based on packet fields including a
few commonly used fields for OpenFlow. Figure 2 (a) shows
the pure amount of processing we need to classify using
hashing approach[6]. In particular, this diagram is based on

gabacho
タイプライターテキスト
Copyright 2013 IEICE



0 2 4 6 8

·103

6

7

8

·105

#O.F. entries

T
hr

ou
gh

pu
t

(p
ps

)
(a)

SW classification
HW classification

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8
·106

#CPU cores

(b)

Estimated
Measured

Fig. 2. (a) Flow classification using hardware vs software in OpenFlow
environment (b) Forwarding throughput versus number of CPU cores

a measurement using a Xeon Quad core 5520 processor with
64-byte packets. The architecture consist of simply a packet
generator that sends traffic to the server with a dual port
NIC and receives packets back to calculate the performance.
The line corresponding with SW classification indicates a
OpenFlow switch completely implemented in software and the
other line illustrates the same scenario but with the classifica-
tion functionality offloaded to the HW. Particularly, the NIC
classifier is the HW classifier in this scenario.

The difference between two lines shows the pure classifica-
tion cost of hashing approach in case of 5-field hashing using
only one core of the CPU. The x-axis of the graph shows
the number of entries in OpenFLow forwarding table. The
near zero slope of both lines show the forwarding is almost
independent from the number of rules. The difference between
two lines is more than 200 Kpps which is a large difference.
The reason behind this difference is that the classification pro-
cess consists of two steps: parsing and lookup. As the lookup
process has negligible overhead, the main cause of difference
is parsing. That is, accessing delay to different parts of the
packet on the memory grows very fast as the number of packets
coming to the system grows. So a 10-field packet classification
rule causes double overhead of classification comparing to 5-
field in the worst case. Building on this intuition, we project
the diagram to a 10-field packet classification scenario which
can be the case for many hashing approach classifiers.

Figure 2 (b) simply illustrates the affect of using multicore
processing on the throughput of the system[6]. Since we want
to consider a network-wide view of nodes each processing a
couple of Mpps, we need to consider multicore processing
scenario. The diagram shows the throughput of 8 cores. To
keep the calculation simple we consider a linear increase with
the number of cores shown by the red line in the diagram.

Figure 2 consists of 5 lines. The red line is the result
of applying Figure 1 (a) on the multicore environment of
Figure 1 (b) which is noted as the cost of 5-field classification
using hashing approach. Note that this is only the cost of
classification meaning the set of resources we need to only
classify the traffic excluding the forwarding overheads. As

0	  
200	  
400	  
600	  
800	  
1000	  
1200	  
1400	  
1600	  

1	   10
	  

19
	  

28
	  

37
	  

46
	  

55
	  

64
	  

73
	  

82
	  

91
	  

10
0	  

Cost	  of	  hashing	  1-‐
field	  (Tagging)	  

Cost	  of	  hashing	  5-‐
field	  

Cost	  of	  hashing	  
10-‐field	  

#cores	  handling	  1-‐
field	  traffic	  

#cores	  hadling	  10-‐
field	  traffic	  

#	  nodes	  each	  processing	  6	  Mpps	  	  
of	  the	  size	  64-‐byte	  in	  the	  network	  

#	  
v.
co
re
s	  
(X
eo

n	  
2.
26
G
H
z)
	  o
n	  
no

de
s	  
re
qu

ire
d	  
	  

on
ly
	  fo

r	  
cl
as
si
fic
aP

on
	  

i.e.,	  307Gbps	  

Fig. 3. 1-field versus 10-field clasification efficientcy

depicted on the x-axis we consider a network with 100 nodes
each processing 6Mpps of the size 64-byte. On the y-axis we
have number of virtual cores we need for classification. As an
example, for classification of 6Mpps of traffic (i.e., a network
with only one node) we need 10 virtual cores.

The blue and green lines are the projection of red line
(i.e., 5-field classification) to 1-field and 10-field classification
(only), respectively. For the total cost of handling packets with
different approaches (i.e., classification and forwarding) see
the dotted lines. We can see the same difference between two
dotted line and between red and blue line. The main intuition
behind Figure 2 is difference between the classification cost
of hashing and tagging. The red area shows this difference.
We conclude that we can use this huge amount of processing
resources as application layer classifiers at the source edge
switches to filter and assign vTags to packets. We leave an
example application layer classification implementation as the
future work.

V. CONCLUSION

We proposed a simple tag based distributed classifica-
tion method as the replacement for hashing techniques. This
method saves processing power and provides a room for more
complex classification mechanism such as the classification we
need for in-network usage based charging and billing of users.

REFERENCES

[1] A. R. Curtis, J. C. Mogul, P. Sharma, and S. Banerjee, “Devoflow: scaling
flow management for high-performance networks,” ACM CCR, vol. 41,
no. 4, p. 254, 2011.

[2] M. Al-Fares, N. Huang, and A. Vahdat, “Hedera: Dynamic flow schedul-
ing for data center networks,” in Proceedings of USENIX NSDI, 2010.

[3] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement with
opensketch,” Tech. rep., USC, Tech. Rep., 2012.

[4] R. Furuhashi and A. Nakao, “Opentag: Tag-based network slicing for
wide-area coordinated in-network packet processing,” in IEEE ICC,
2011.

[5] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and
P. Nikander, “Lipsin: line speed publish/subscribe inter-networking,” in
ACM CCR, vol. 39, no. 4. ACM, 2009, pp. 195–206.

[6] V. Tanyingyong, M. Hidell, and P. Sjodin, “Using hardware classification
to improve pc-based openflow switching,” in IEEE HPSR, 2011.

gabacho
タイプライターテキスト
Copyright 2013 IEICE




