
Experiments with Practical
On-Demand Multi-Core Packet Capture

Marat Zhanikeev∗
∗ Department of Artificial Intelligence,

Computer Science and Systems Engineering,
Kyushu Institute of Technology

Kawazu 680-4, Iizuka, JAPAN 820-8502
Email: maratishe@gmail.com

Abstract—This paper proposes and evaluates performance of an
on-demand packet capture process in multi-core architectures. The
multi-core on-demand process presented in this paper can handle
higher packet throughput and is sufficiently flexible to support even
complex per-packet processing logic.

Index Terms—multi-core architecture, on-demand packet capture,
online traffic analysis, packet processing overhead

I. I

High-performance packet capture on commodity hardware has
recently become feasible, as long as the traditional libpcap
technology is replaced with more efficient middleware like
PF_RING [1]. Multi-core capture is a recent topic and does not
have much existing literature [2]. The few existing studies do
not offer a practical use for the technology. This paper studies
the utility of the multi-core packet capture and specifically the
possibility of adding and removing capture processes (cores) on
demand. The latter technique has many practical uses like par-
allel traffic processing, on-demand anomaly detection, precision
flow accounting, etc. Theoretically, the on-demand multicore
environment makes it possible to mix shallow and deep analysis
of traffic.

II. R W

At packet level, per-packet processing cost is often the issue,
where efficient hashing can help alleviate the problem. Earlier
study by this author showed that cost varies wildly depending
on processing logic [3]. Packets are not always aggregated into
flows. This author proposed a method which should capture
QoS context at packet level without flow aggregation [5]. Also,
analysis can be done at the level of IP address itself [6], also
bypassing flows.
One specific sampling discipline – the context-based sampling

– requires special attention. This author contributed to this topic
by proposing several algorithms based on batch sampling [7][8].
Context awareness increases the per-packet cost but a multicore
process can distribute the increased cost over multiple cores.
Multicore capture can solve two major problem. It can help

avoid sparse sampling [9]. Also, all methods which use packets
directly – like the anomaly detection method in [4] – can
also benefit. Basically, any heavy-duty packet processing should
benefit from multicore capture [5][7][8].

Timeline

PF_
RING

PF_
RING

PF_
RING

Manager

capture process

capture process

capture

Core1

Core 2

Core X

Figure 1: The on-demand packet capture process which exploits
multiple cores on commodity hardware.

The idea of a multicore capture was first expressed is [1] by
the creator of pfring himself. There are, however, surprisingly
few studies on putting this functionality to practical use. The
only study which is close in spirit to this study is in [2].
However, the findings in this paper are opposite to those in
[2] in that this paper finds that there is very little overhead from
introducing additional cores.

III. T O -D C P
Fig.1 depicts the basic idea behind the on-demand capture

process. For each capture request, Manager spawns a separate
capture process on a free core. At spawning time (forking,
actually), the on-demand thread is configured with its target –
a selection rule for incoming packets. Each on-demand capture
is split into capture and process phases. �
Note that this design is open to several optimization problems.

For example, scheduling of on-demand threads in such a way
as to optimize utilization of cores can be one such optimization
problem.

IV. E S T
An Intel i7 3.2GHz box with 4 cores and 8 threads (CPU

multithreading) is used for the tests. Built-in NIC is used as
is. Kernel module of pfring is precompiled and loaded into the
kernel prior to running experiments.
Fig.2 shows how the testbed is designed. 1Gbps environment

is supported by using 1GbE hub and making sure that all
machines have 1GbE NICs. Three separate machines are used
as traffic generators. While it is possible to replay packets from

gabacho
タイプライターテキスト
Copyright 2013 IEICE

PF
_R

IN
G

meter

User
space

Kernel

Capture
thread

Capture
thread

Capture
thread

NIC Driver

…

…

1G Hub

3 traffic
generator
machines

Linux boxLinux boxLinux box

Figure 2: The experimental setup used to get results for this
paper. The nominal capacity of the network is 1Gbps.

an existing trace [10], this author opted for well-controlled
uniform workloads. In each run all traffic generators send as
many packets as possible (no sleep in sending loop).
One experimental run is conducted as follows. All processes

start on command from the Meter, only pfring manager is started
by the main script locally. For each run, the main script collects
data from all the machines and wraps it into a single file. Over
2500 runs each 10s long were conducted.
Two experiments were conducted. The first measures per-core

capture throughput and the load (CPU utilization) it inflicts. The
target is to see the relative effect from running multiple cores
verses the traditional case of a single core. The second measures
reaction time of on-demand capture – referred to as thread lag
– between the intended and the actual starting time on a new
on-demand capture process.

V. E R
Fig.3 is a 3D visualization of the results (2d + bullet size).

Each data point in the plots is one experimental run.
The rightmost plot visualizes capture throughput across vari-

ous packet sizes. There is a well-pronounced exponential trend
where smaller packet size greatly increases the capture through-
put. The trend saturates at 500-byte packets and about 150kpps
(150k * 500 * 7 ≥ 500Mbps). There are rare cases when
150kbps is registered for larger packets (closer to 1Gbps) but
most cases are below 100kpps. Roughly the same throughput is
achieved with small packet size (700kpps, 64 bytes). The effect
of multicore capture on throughput is found in the left part where
there is a clear trend showing that fewer cores can achieve hig
her throughput
when packet size is small.
The other two plots show how load, measured as the sum of

CPU utilizations across all cores, is affected by the multicore
capture. The plots in fact show the lack of any effect as bullets
are mixed roughly uniformly across the plots. The leftmost plot
repeats the above trend in which higher packet throughput is
achieved by fewer cores. In the vertical dimension, there is no
trend, which means that multicore capture does impose a
major penalty on CPU load.
Table.I shows the setup for this second experiment. Note

that interval between threads is referred to as thread gap. The

TABLE I: Parameters used for experiments on rapid on-demand
capture.

Parameter name Parameter values Comments
interval 100,200,500,1000,2000,5000,

10000,50000,100000,200000,
500000 (microseconds)

Interval the manager
thread uses to spawn
capture threads.

packet size between 100 and 1200
bytes with step 100

Used for background
traffic

threads between 2 and 7 with step 1 Number of capture
threads, spawned by
the manager thread.

objective is to measure thread lag for various combinations of
packet size, number of cores, and thread gap.
Fig.4 shows the results in two dependency combinations

– thread lag against packet size and thread lag against the
configured thread gap. Note that each curve represents data
collected for one of the spawned threads, where “Thread 3”
means the third spawned thread. Both plots in Fig.4 show high
volatility as data points – averages of multiple experiments under
a given configuration – in some rare cases depart from the
overall trend. The high level of volatility is also due to the
presentation method itself where each curve represents only one
pair of threads (as in gap/lag between 5th and 4th threads). The
overall trend can still be confirmed visually. The upper plot in
Fig.4 shows that thread lag does not
depend on packet size. The average lag is around 10-15ms
(positive), regardless of which thread pair is selected.
The lower plot of Fig.4 also shows roughly the same per-

formance for all curves (jitter aside), which, as was previously
discovered, hints at the lack of dependency on the number of
threads in a multicore process. However,
there is dependency of thread lag on thread gap itself (beware
the log scale). The curves start to increase starting from 1ms
gaps (104) and keeps increasing in a piecewise linear trend.
Between 104 and 105 the lag is around 30ms but is doubled for
500ms gaps.
The simple reading is that for half a second interval be-

tween threads, one can expect about 15-20% lag from the
intended/scheduled starting time of packet capture. This result
also confirms that pfring architecture incurs internal delays (in
kernel space) when creating new pfrings next to heavily utilized
existing ones.

VI. C
This paper is the first to propose the concept of on-demand

packet capture in multicore architectures. Evaluating the perfor-
mance of a simple implementation of this concept was the main
objective of this paper. The multicore on-demand capture has
become readily available in recent years as commodity hardware
with 4-8 cores is now commonplace.
It was discovered that the multicore process has a choking

point. In the presented testbed the choking point was found only
at the smallest packet size – 64 bytes – where it was discovered
that fewer cores could capture more packets on average. No
correlation was found between CPU load and the number of

gabacho
タイプライターテキスト
Copyright 2013 IEICE

0 200 400 600
Packet throughput (kpps)

24
25
26
27
28
29
30
31

C
PU

 u
til

iza
tio

n
(%

, s
um

)

2

3
1

3

2

2

7

6

1

4

2

6
6

7

4
3

4
5

1

6

7

2

3

5

5

6

4
1

1

2

3
3

73

5

7

5

7

3

3

7 5

2

3

3
1 3

1

3

3

6

44

3

2 4

3

6

4

5

0 500 1000 1500
Packet size (bytes)

24
25
26
27
28
29
30
31

C
PU

 u
til

iza
tio

n
(%

, s
um

)

6

1

6

7

2

1

7

6

4

7
5

5 7

1

5

1
7

7

3

5
1

2

2

6

3

2

1

7

5

6

3

4

5 7
137 2

4

6

3

7

7
2

2

6

2

3

1 6
7

3

7
3

6

1

7

2

1
4

Text bullet = no. of cores (also rings and capture threads)Each plot is a representative sample of all data

0 500 1000 1500
Packet size (bytes)

0
100
200
300
400
500
600
700

kp
ps

 (p
er

 c
or

e)

7 2

1

35
3

7

12 7

1

4

1
3

3
2
3

2

1

3

6 7

1

2
3

7 2

3

1

2

6

6

7 17

5

2
5

6

5

7 747 7

3

5 6 3
2

67

3

7

7
7

6
2

2
A trend: fewer cores
have higher throughput
for the same packet size

No trend here

Figure 3: Results for Experiment A. Overhead from running multiple capture threads in parallel is non-existent. Note that in order
to increase information density, bullets directly represent the number of cores, i.e. the number of capture threads running in parallel.

cores, regardless of packet size. This speaks in favor of the
efficiency of the ring architecture advertised by PF_RING [1].
It was found that on average about 10-15% lag is to be

expected for a newly spawned core, which means that the new
thread starts capturing packets after a small lag. This lag has to
be taken into consideration if the on-demand process is spawned
to capture a specific flow or a group of flows at a given time.
Once new rings are created, they do not differ in performance
from preceding rings, as was confirmed by the results in this
paper.
In future work, the on-demand capture process will be used

as part of several methods developed by this author for realtime
analysis of traffic, where the multicore architecture can offer
considerable boosts both in efficiency and functionality.

R
[1] Luca Deri, “Modern Packet Capture and Analysis: Multi-Core, Multi-

Gigabit, and Beyond”, Internet Measurement (IM) Tutorial, 2009.
[2] M.Schultz and P.Crawley, “Performance Analysis of Packet Capture Meth-

ods in a 10 Gbps Virtualized Environment”, 21st International Conference
on Computer Communications and Networks (ICCCN), Munich, Germany,
pp.1–8, August 2012.

[3] W.Xie, M.Zhanikeev, and Y.Tanaka, “Processing Overhead in IP Traf-
fic Analysis”, IEICE Communications Society Conference, No.BS-7-36,
pp.S115–S116, September 2010.

[4] M.Zhanikeev, Y.Tanaka, “Lightweight Traffic Monitoring and Analysis
Using Video Compression Techniques”, Management Enabling the Future
Internet for Changing Business and New Computing Services, Springer
LNCS vol.5787, pp.92–101, September 2009.

[5] M.Zhanikeev, R.Yamamoto and Y.Tanaka, “Capturing QoS Context by
Alternative Flow Monitoring in Clouds”, IEICE General Conference,
No.BDS-1-2, pp.S128–S129, March 2012.

[6] M.Zhanikeev, Y.Tanaka, “A Framework for Detection of Traffic Anoma-
lies Based on IP Aggregation”, IEICE Transactions on Information and
Systems, vol.E92-D, no.1, pp.16–23, January 2009.

[7] M.Zhanikeev and Y.Tanaka, “Control over Precision of Flow Volume
Sampling using Random Batch Sampling”, IEICE Technical Report on
Network Systems (NS), vol.112, no.463, pp.107–112, March 2013.

[8] M.Zhanikeev, Y.Tanaka and R.Yamamoto, “Alternative Packet Sampling
for Improved Fairness and Function”, IEICE General Conference, No.BS-
3-4, pp.S7–S8, March 2012.

[9] Sardar Ali, Irfan Ul Haq, Sajjad Rizvi, Naurin Rasheed, Unum Sarfraz, Ali
Khayam, and Fauzan Mirza, “On Mitigating Sampling-Induced Accuracy
Loss in Traffic Anomaly Detection Systems”, ACM SIGCOMM, 2010.

[10] D.Van, M.Zhanikeev and Y.Tanaka, “Effective High Speed Traffic Replay
Based on IP Space”, 11th International Conference on Advanced Commu-
nication Technology (ICACT), Phoenix Park, Korea, pp.151–156, February
2009.

0 200 400 600 800 1000 1200
Packet size (bytes)

-80

-60

-40

-20

0

20
Th

re
ad

 la
g

(m
s)

Thread 2
Thread 3

Thread 4
Thread 5

Thread 6
Thread 7

1.6 2.4 3.2 4 4.8 5.6
Thread gap as log(us)

-60

-30

0

30

60

90

Th
re

ad
 la

g
(m

s)

Figure 4: Results on the lag when spawning additional capture
threads on demand.

gabacho
タイプライターテキスト
Copyright 2013 IEICE

