IDS for Detecting Malicious Non-Executable Files
Using Dynamic Analysis

Ahmad Bazzi
Graduate School of Engineering
Gunma University
1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
Telephone/Fax: (+81) 277-30-1837
Email: ahmad@nztl.cs.gunma-u.ac.jp

Abstract—Attackers are increasingly relying on non-
executable files to launch their attacks. Anti-virus solutions can
detect a high percentage of malicious files but usually cannot
reach and maintain a 100% detection rate. We propose a file-level
IDS that relies on automated dynamic analysis system (sandbox)
to detect malicious PDF files. We achieved a 99.2% detection rate,
where the rates of both the false positives and the false negatives
are less than 1%. Because it does not rely on anti-virus signatures,
this solution can detect malicious documents that utilize malware
not covered by the anti-virus database.

I. INTRODUCTION

Computer users face myriad threats against their computer
systems; these threats range from viruses and Trojans to other
forms of malware. Current protection mechanisms include
firewalls, antivirus systems, intrusion detection systems (IDS)
among others. Unfortunately, any security component suffers
from certain inherent limitations.

An antivirus system relies on a virus signature database
which allows it to efficiently detect viruses with known sig-
natures. This database needs to be updated regularly to cover
any new viruses encountered by the antivirus vendor. Unfor-
tunately, this means that such an approach is not efficient at
detecting previously unseen malware. Therefore any antivirus
solution fails to achieve a 100% detection rate [1], [2].

IDS are generally divided into network-based IDS [3] and
host-based IDS [4]. The two main approaches for intrusion de-
tection are attack signature database and anomaly detection [5].
Most commercial solutions, such as Snort [6], rely on attack
signature set, which is more mature and reliable; however, it
fails to detect attacks not covered by its database.

Attackers used to rely exclusively on executable files to
launch their attacks; however, this has changed in the past
years. Common types of non-executable files can be made
malicious if a suitable software vulnerability is discovered in
its assigned viewer. This includes office documents, PDF files,
etc. Moreover, users have been trained to trust non-executable
files and this makes them more prone to get infected.

Let us consider PDF files as an example. Modern PDF
file format support JavaScript [7]. When a vulnerability is
discovered inside a PDF viewer, attackers attempt to exploit
it by writing suitable JavaScript code [8]. For further details,
Ab Rahman guides the reader through the analysis of several

Copyright2013IEICE

Yoshikuni Onozato
Division of Electronics and Informatics
Faculty of Science and Technology
Gunma University
1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
Telephone/Fax: (+81) 277-30-1837
Email: onozato@cs.gunma-u.ac.jp

malicious PDF files using commonly available tools [8]. Simi-
larly, Stevens discusses the analysis of various malicious PDF
files using publicly available tools that he has created for PDF
analysis [9].

The limitations of the antivirus and IDS, along with the
gravity of software vulnerabilities, are amplified when the
attacker is a rich corporation or even a government. These
players have shifted the complexity of the attacks to a new
level. Motives now include cyber-espionage [10] and cyber-
warfare [11].

In brief, the sophistication of the players and the limi-
tation of the current solutions require a different approach
to handle the new threats, such as malicious non-executable
files especially if implementing zero-day exploits. We think
that automated dynamic analysis approach is one promising
solution, and we implement a file-level IDS utilizing this
approach. A file-level IDS inspects the transferred files instead
of the network packets.

This paper is organized as follows: Section II discusses
selected previous works. After we present the general steps of
the proposed solution in Section III, we discuss our working
prototype and the experimental results in Section IV. Finally
we evaluate the advantages and limitations of this solution in
Section V before writing our conclusion in Section VI.

II. PREVIOUS WORKS RELATED TO MALICIOUS PDF
DETECTION

There have been several modern attempts to detect mali-
cious PDF files. In particular, the two approaches are static
analysis which studies the code without running it, and dy-
namic analysis which requires running the inspected code.

Laskov and Srndi¢ apply static analysis on the JavaScript
code extracted from the PDF documents in order to detect
the malicious ones [12]. Smutz and Stavrou also use static
analysis; they extract the features from the document metadata
and structure and apply an ensemble learning method for
classification [13]. Tzermias et al. combine static analysis of
certain document objects along with dynamic analysis of the
embedded JavaScript code [14]. We follow a different approach
by relying on dynamic analysis of the whole document file
without the use of static analysis.

gabacho
タイプライターテキスト
Copyright 2013 IEICE

Internal Network Switch
(N
Report File Packet
Analyzer < Sandbox Reassembly < Capture

Fig. 1. File-level IDS with automated dynamic analysis system: the
transferred files are assembled, submitted to the sandbox and the resulting
sandbox report is automatically analyzed.

III. PROPOSED SOLUTION

We propose a file-level IDS with an automated dynamic
analysis system. The proposed system is shown in Fig. 1. The
protected network is connected to the Internet through a switch
that mirrors all the traffic to the IDS. The IDS captures all the
passing packets and reassembles the selected file types. Each
reassembled file is submitted to the sandbox for analysis. The
sandbox opens the submitted file and generates a report of
the observed activities. This report is analyzed using machine
learning to detect whether the file is malicious.

The performed tasks are the following:

1) Capture all packets

2) Assemble the chosen file types

3) Submit the assembled file to the sandbox

4) Wait for the sandbox to open the submitted file and
generate a report

5) Extract certain features from the resulting report and
use machine learning for analysis

6) Notify the administrator if the file is detected as
malicious

IV. PROTOTYPE IMPLEMENTATION AND RESULTS
A. Implementation

The system is comprised of the following main compo-
nents:

1) Packet Capture Module: We implemented the packet
capture module using libpcap', a mature and robust open
source C/C++ library for capturing network packets.

2) File Reassembly Module: This module assembles the
captured packets of the transferred files of selected file types.

3) Sandbox Solution: Cuckoo’s Sandboxsatisfied all our
needs for the dynamic analysis system. It is an open source
program written mainly in Python and connects to virtualiza-
tion software to execute or open the submitted file. It reports
on the following [15]:

1) Files created, downloaded or deleted by the submitted
file

2) Traces of Win32 API calls performed by the pro-
cesses related to the submitted file

3) Memory dumps of the relevant processes

4) Network traffic capture

5) Full memory dump

6) Screenshots of the Windows desktop during the open-
ing/execution of the submitted file

To process a file, the sandbox starts with a clean virtual
machine (VM), opens the submitted file inside this VM,
records the observed activities and generates a report.

4) Report Analyzer: We implemented a script in Ruby
language to extract certain features from the Sandbox reports.
It extracts the numbers of the following:

1) Different screenshots

2) Created files

3) Accessed files

4) Accessed registry keys

5) Active processes

6) Successful process actions

7) Failed process actions

8) Registry-related process actions

9) File system-related process actions
10) Process-related process actions
11) Services-related process actions
12) Network-related process actions
13) Synchronization-related process actions

These features are used in the machine learning classifi-
cation model. We used support vector machines (SVM) and
relied on LIBSVM [16].

B. Experiment

The experiment is conducted using 6,052 benign files and
10,852 malicious files. We obtained these files from Contagio
Dump?. The training set is made of 6,000 files: 3,000 benign
files and 3,000 malicious files. The testing set is made from
the remaining 10,904 files, i.e. 3,052 benign files and 7,852
malicious files.

We analyzed the sandbox reports of the related files based
on the 13 extracted features using LIBSVM. We achieved the
following results:

e Accuracy = 99.175%, which is the percentage of
correctly classified files to the total number of files.

e Percentage of False Positives = 0.983%, which
is the percentage of misclassified benign files to the
total number of files.

e Percentage of False Negatives = 0.764%, which
is the percentage of misclassified malicious files to the
total number of files.

C. Detection of New Malicious Files

In Section I'V-B, we used a training set of 6,000 files. The
question that arises is whether this model can detect malicious
files that implement newer techniques. Hence we obtained
another 148 malicious files using exploits newer than the ones
used in the training. We obtained the following results:

e Accuracy = 95.946%

Uhttp://www.tcpdump.org/

Copyright2013IEICE

Zhttp://contagiodump.blogspot.com/

gabacho
タイプライターテキスト
Copyright 2013 IEICE

e Percentage of False Negatives = 4.054%

Although the detection accuracy is not as high as earlier, it
is important to note that the PDF viewer in the sandbox VM
is actually immune to this new vulnerability, yet the system
was still able to reach almost 96% detection rate. In a real life
scenario, the sandbox VMs should use the same versions of
the vulnerable programs used by the protected clients.

V. SOLUTION EVALUATION

In this section we consider the advantages and disadvan-
tages of our system.

A. Advantages

1) Anomaly detection: This approach does not rely on any
static malware signature database but rather on a model of the
behavior of the system when opening benign and malicious
files. This allows it to detect new malicious files whose
signatures are not explicitly available. Moreover, this solution
can be combined with an anti-virus solution to achieve even
higher detection rates considering that their detection methods
are relatively independent.

2) Modularity: As for the design, this system is quite
modular and might also be implemented as part of a proxy
server. This would eliminate the need for the packet capture
and reassembly modules.

3) Intrusion prevention system: The proposed design is
an intrusion detection system. Converting this to an intrusion
prevention system (IPS) can be achieved by implementing it
inline, i.e. between the Internet and the local network. The
main limitation is that each file requires around two minutes
—depending on the configuration of the sandbox— and this
might not be tolerated by the users.

B. Disadvantages

1) Processing Time: The processing time is around 2
minutes so that the file is opened in the sandbox and the
malicious code is given enough time to execute. In common
environments, users might not tolerate such a delay; therefore,
an IDS configuration would be more suitable. However, if
the network is highly critical, we expect the users to tolerate
the added delay imposed on the files accessed from untrusted
networks in order to achieve the added security. Accordingly,
an inline deployment becomes the recommended option.

2) Virtualization-Aware Malware: Virtualization-based dy-
namic analysis systems are becoming more common and this is
pushing the attackers to create virtualization-aware malicious
code. In other words, the malicious code will not completely
execute in a virtual computer environment in order to avoid
detection. In our approach, we rely on a diversity of features
where opening a malicious file would still generate enough
anomalous signatures even if the malicious code is not fully
executed.

3) Encrypted Connections: Files transferred over encrypted
connections cannot be assembled using this approach. Al-
though using some form of the man-in-the-middle attack might
help obtain the files in clear text, it is privacy invasive. Special
measures might need to be taken to ensure that files transferred
over encrypted connections are not malicious.

Copyright2013IEICE

VI. CONCLUSION

In this paper, we presented a file-level IDS that relies on
an automated dynamic analysis system to detect malicious
files. Using SVM, we classified the files using several features
extracted from the sandbox reports. The achieved detection
accuracy is around 99.2% with relatively low rates of false
positives and false negatives.

REFERENCES

[11 S. Edwards, “Home Anti-Virus Protection, January - March
2013,” Dennis Technology Labs, Tech. Rep. April, 2013.
[Online]. Available: http://www.dennistechnologylabs.com/reports/s/
a-m/2013/DTL_2013_Q1_Home.1.pdf

[2] AV-Comparatives, “Whole Product Dynamics “Real-World” Protection
Test - (August-November) 2012,” AV-Comparatives e.V., Tech. Rep.
November, 2012. [Online]. Available: http://www.av-comparatives.org/
wp-content/uploads/2012/12/avc_prot_2012b_en.pdf

[3] M. Cremonini, “Network-Based Intrusion Detection System,” in Hand-
book of Information Security - Volume 3, H. Bidgoli, Ed. John Wiley
& Sons, Inc., 2006, pp. 713-729.

[4] G. Vigna and C. Kruegel, “Host-Based Intrusion Detection,” in Hand-
book of Information Security - Volume 3, H. Bidgoli, Ed. John Wiley
& Sons, Inc., 2006, pp. 701-712.

[5] P. Ning and S. Jajodia, “Intrusion Detection System Basics,” in Hand-
book of Information Security - Volume 3, H. Bidgoli, Ed. John Wiley
& Sons, Inc., 2006, pp. 685-700.

[6] M. Roesch, “Snort - Lightweight Intrusion Detection for Networks,” in
Proceedings of the 13th USENIX Conference on System Administration,
ser. LISA ’99. Berkeley, CA, USA: USENIX Association, 1999,
pp. 229-238. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1039834.1039864

[71 Adobe Systems Incorporated, Document manage - Portable document
format - Part 1: PDF 1.7, 1st ed. ISO, 2008. [Online].
Available: http://wwwimages.adobe.com/www.adobe.com/content/dam/
Adobe/en/devnet/pdf/pdfs/PDF32000_2008.pdf

[8] M. Ab Rahman, “Getting Owned By Malicious PDF - Analysis,” SANS
Institute, 2010. [Online]. Available: http://www.sans.org/reading_room/
whitepapers/malicious/owned-malicious-pdf-analysis_33443

[9] D. Stevens, “Analyzing Malicious PDF Files,” 2010. [Online]. Avail-
able: http://didierstevens.com/files/data/malicious-pdf-analysis-ebook.
zip

[10] Mandiant, “Mandiant APT1,” Mandiant, Tech. Rep., 2013. [Online].
Available: http://intelreport.mandiant.com/Mandiant_APT1_Report.pdf

[11] G. Mcdonald, L. O. Murchu, S. Doherty, and E. Chien, “Stuxnet 0.5:
The Missing Link,” Symantec Corporation, Tech. Rep., 2013. [Online].
Available: http://www.symantec.com/content/en/us/enterprise/media/
security_response/whitepapers/stuxnet_0_5_the_missing_link.pdf

[12] P. Laskov and N. Srndi¢, “Static Detection of Malicious JavaScript-
Bearing PDF Documents,” in Proceedings of the 27th Annual Computer
Security Applications Conference on - ACSAC 11, ser. ACSAC ’11.
New York, New York, USA: ACM Press, 2011, pp. 373-382. [Online].
Available: http://doi.acm.org/10.1145/2076732.2076785

[13] C. Smutz and A. Stavrou, “Malicious PDF Detection using Metadata
and Structural Features,” in Proceedings of the 28th Annual Computer
Security Applications Conference on - ACSAC ’'12. New York,
NY, USA: ACM Press, 2012, pp. 239-248. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2420950.2420987

[14] Z. Tzermias, G. Sykiotakis, M. Polychronakis, and E. P. Markatos,
“Combining Static and Dynamic Analysis for the Detection of
Malicious Documents,” in Proceedings of the Fourth European
Workshop on System Security - EUROSEC ’11, ser. EUROSEC ’11.
New York, New York, USA: ACM Press, 2011, pp. 1-6. [Online].
Available: http://doi.acm.org/10.1145/1972551.1972555

[15] C. Guarnieri, A. Tanasi, J. Bremer, and M. Schloesser, “Cuckoo’s
Sandbox,” 2013. [Online]. Available: http://www.cuckoosandbox.org
[16] C.-C. Chang and C.-J. Lin, “LIBSVM: A Library for Support Vector

Machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, no. 3, pp. 27:1-27:27, 2011.

gabacho
タイプライターテキスト
Copyright 2013 IEICE

