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Abstract—Iterative processing, originated from the introduc-
tion of turbo codes, has become prevalent technique in modern
receiver design. Its applications extend beyond channel decoding
and include signal detection, channel estimation and equalization,
interference suppression, and synchronization. In this paper, in
the aspect of energy efficiency in wireless communication systems,
we present and compare several reduced complexity algorithms
for component decoding modules in iterative receivers. The
comparison is carried out in terms of computational requirements
and error performance for the case of turbo TCM systems.

I. INTRODUCTION

The advent of parallel concatenated convolutional (turbo)
codes with the iterative decoding technique [1], [2] is un-
doubtedly one of the most significant breakthroughs in modern
communications in the last decades. This high recognition of
turbo codes stems from the fact that they offer performance
approaching the Shannon capacity limit with the decoding
procedure of reasonable computational complexity. The turbo
decoding principle based on the idea of exchanging informa-
tion between component decoders in an iterative manner has
also been adapted to other code classes and transmission tech-
niques, including schemes that have emerged as extensions of
a turbo coding concept (often referred to as turbo-like codes).
Examples of systems employing iterative decoding in the
receiver include serially concatenated codes [3], low-density
parity-check codes (LDPC) [4], bit-interleaved coded mod-
ulation (BICM) [5], turbo trellis-coded modulation (TTCM)
[6] and space-time turbo codes (STTC) [7]. Furthermore, the
idea of passing information back and forth between different
components in a receiver (so-called iterative processing or
turbo processing) has found applications not only in channel
decoding but also in signal detection, channel estimation and
equalization, interference suppression, and synchronization,
becoming prevalent in state-of-the-art receiver design [8].

Iterative decoding makes use of soft-input soft output
(SISO) component decoders. The optimal algorithm for SISO
decoders is symbol-by-symbol maximum a posteriori proba-
bility (MAP) algorithm [9] which is practically implemented
in the log-domain and known as the Log-MAP algorithm [10].
The calculation of the logarithm of the sum of exponentials,
denoted as max∗ operator [11], constitutes a significant, and
usually dominant, portion of the overall decoder complexity.
The manner that max∗ is implemented is critical to the
performance and complexity of the decoder. Due to this,
reduced complexity decoding algorithms for SISO modules
have received a considerable amount of attention in recent
years. All the approaches that have appeared in the literature

target at a simplification of the max∗ computations without
a substantial loss of the decoding performance.

The use of simplified decoding algorithms in the receiver is
also favorable in terms of the energy efficiency, particularly in
the wireless transceivers. Reducing the number of operations
performed by the digital signal processor (DSP) per decoding
step translates to energy savings in the wireless device that is
highly desirable feature. In this paper, we deal with reduced
complexity algorithms for SISO decoders in wireless iterative
receivers in the context of energy efficiency. In particular,
we review the algorithms recently proposed in [12]-[16] in
terms of the computational requirements and resulting energy
savings for the case of TTCM systems. Simulated bit error
rate (BER) performance results for AWGN and uncorrelated
Rayleigh fading channels are also given. The remainder of
this paper is organized as follows. Section II describes the
iterative receiver structure and operation principle, and Section
III presents the investigated reduced-complexity algorithms.
Complexity comparison of the algorithms is provided and
discussed in Section IV. Simulation results are given in Section
V, and Section VI contains concluding remarks.

II. ITERATIVE RECEIVER

The block diagram of a generic iterative receiver is depicted
in Fig. 1. Depending on the system, as the SISO modules
operate appropriate blocks, e.g., component decoders for turbo
codes or parallel TTCM, inner decoder and outer decoder for
serially concatenated codes or serial TTCM, demodulator and
decoder for BICM, etc. Hereafter in this Section, we assume
the structure of an iterative decoder for parallel concatenated
codes in Fig. 1. The general idea of iterative decoding is to
provide some ’soft’ information about the the decoded symbols
from the output of one component decoder to the input of
the other in an iterative manner in order to improve decisions
about the data symbols. The presence of a feedback path allows
to realize successive iterations. Soft information generated
and accepted by SISO decoders has a character of reliability
information and usually takes the form of a log-likelihood ratio
(LLR) for each data symbol. As shown in Fig. 1, the inputs
to each decoder are the received (intrinsic) information and
the extrinsic information. The former comes from the received
data symbol whereas the extrinsic information is produced
by the other decoder and reflects its beliefs regarding the
data, achieved after completion decoding in current iteration.
The extrinsic information is used as a priori information for
the SISO decoder in the next decoding step. The output of
each decoder contains only extrinsic information to pass on



Fig. 1. Block diagram of a generic iterative receiver (π – interleaver, π−1

– deinterleaver).

to the next decoder. After performing decoding by both SISO
decoders in sequence, the whole process iterates again. Once
the iterations have been completed, a hard decision on data
symbols is taken using the output LLRs from the SISO 2
component decoder. For the TTCM codes, investigated in this
paper, the iterative receiver operates essentially in a fashion
described above.

III. SIMPLIFIED DECODING ALGORITHMS FOR SISO
DECODERS

In the Log-MAP algorithm, the calculation of the soft
output as well as the forward and backward metrics, and the
branch metrics of trellis transitions requires computation of the
max∗ operator defined as

max∗(x1, . . . , xn) = ln

(
n∑

i=1

exi

)
(1)

An exact solution to this problem, used in the Log-MAP
algorithm, is the application of the Jacobian logarithm

max∗(x1, x2) = max(x1, x2) + ln(1 + e−|x2−x1|)

= max(x1, x2) + fc(|x2 − x1|)
(2)

where fc(.) is a correction function. To obtain the max∗

operator for more than two arguments, i.e. n > 2, the Jacobian
logarithm (2) is applied recursively n− 1 times. For example,
assuming n = 3 it yields:

max∗(x1, x2, x3) = max∗(max∗(x1, x2), x3). (3)

In order to minimize the complexity of the Log-MAP algo-
rithm, the correction function fc(.) is practically implemented
with a look-up table (LUT) with eight values [10]. If the
correcting value of the LUT is omitted, then the Log-MAP
algorithm simplifies to the Max-Log-MAP algorithm [10].

Since the Jacobian logarithm must be applied in a recursive
manner of (3) for n > 2 arguments, it is intuitive to expect
that a max∗ approximation with n arguments may bring com-
plexity reductions as compared with the conventional Jacobian
logarithm solution. Motivated by this reasoning, the following
approximations for the max∗ operator with n arguments have
been recently proposed.

First algorithm, referred to as AvN Log-MAP [16], is
derived from two inequalities. The first origins from the
definition of the max∗ operator given in (1), while for the
second one, the Jensen inequality (4) is considered:

n∑
i=1

αi

n
≥

(
n∏

i=1

αi

) 1
n

, αi > 0. (4)

Based on these two inequalities, the new approximation for
the max∗ is obtained and expected to have a better perfor-
mance than the Max-Log-MAP algorithm. The approximation
is formulated as

max∗(x1, . . . , xn) ≈ max

(
max
i=1:n

(xi),
1

N

n∑
i=1

xi

)
, (5)

where N is the parameter of the approximation. For a given
transmission scheme, an optimal value of N minimizing BER
performance at the assumed signal-to-noise ratio (SNR) level
can be found by means of computer simulations.

Reduced complexity algorithm, denoted as LM-n, was
proposed in [15]. This approach is derived from the Chebyshev
inequality (

n∑
i=1

ai

)(
n∑

i=1

bi

)
≤ n

n∑
i=1

aibi, (6)

where a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn ∈ <. The
final formula for the LM-n algorithm is the following

max∗(x1, . . . , xn) ≈ max
i=1:n

(xi) + ln

(
1 +

(n− 1)

n
e−|z|

)
,

(7)
where z is the absolute value of the difference between
the maximum value and the second maximum value among
n arguments of max∗ operator. As seen, the first term of the
approximation is a simple max operation. The second term
of (7) can be thought as a correction function fc(.). For the
given n, the curve of the correction function can be analyzed
and approximated with several values stored in small LUT.
In our implementation, we have approximated the correction
function with eight values.

Another algorithm that is also based on the Chebyshev
inequality was introduced in [14]. The LM-n-q algorithm
uses the following approximation for the max∗ operator with
n arguments:

max∗(x1, . . . , xn) ≈ max
i=1:n

(xi) + ln
(
1 + q · e−|z|

)
, (8)

where, similar as in the LM-n algorithm, z is the absolute
difference between the maximum value and the second max-
imum value among n arguments of max∗ operator, and q is
an additional parameter that has influence on the correcting
term. For a given transmission scheme, the optimal value of
the parameter q that minimizes BER at the assumed signal-
to-noise ratio (SNR) level can been found through computer
simulations. Comparing approximations (7) and (8), it is easily
seen that the LM-n and LM-n-q algorithms differ only in
the form of the correction function fc(.). As in the LM-n
implementation, eight values of the correction function were
stored in LUT used in our simulations.

Other solution for equation (2) is presented in [12], [13].
Instead of approximating fc(.) and for pure mathematical
purposes, a novel approximation of the Jacobian logarithm has
been obtained by solving a geometric programming problem
in [17]. The authors in [17] have approximated (2) as a whole,
i.e. the max∗ operator directly. In particular, the Jacobian



logarithm has been simplified into r piecewise-linear (PWL)
approximation terms deploying the max operation

max∗(x1, x2) ≈ max(κ1x1+λ1x2+µ1, . . . , κix1+λix2+µi),
(9)

where κi, λi and µi are real positive values and i ≥ 2. The
best PWL approximations of the max∗ operator with different
number of terms, denoted with r, can be found in [17]. In
general, the approximation error reduces in the order of

√
2

r2

and for practical applications 2 ≤ r ≤ 5 has been considered.

A relatively simple expression for the max∗ approximation
is obtained for r = 3 as

max∗(x1, x2) ≈ max(x1, 0.5 ·x1+0.5 ·x2+0.693, x2). (10)

The least square approximation error resulting from (10) as
compared with the exact computation from (2) is equal to
0.223. The Log-MAP decoding algorithm using the PWL
approximation with r = 3 terms will be examined in Sections
IV and V. It can also be mentioned that for the turbo decoding,
the r = 2 approximation is identical to the Max-Log-MAP
algorithm.

IV. COMPUTATIONAL REQUIREMENTS COMPARISON

From the implementation point of view, and also the
potential capabilities of energy savings, the key aspect of the
algorithms is their computational requirements. The reduced
complexity algorithms presented in Section III have been
compared against the optimal Log-MAP and the simple Max-
Log-MAP algorithms for the instance of turbo TCM transmis-
sion. We have considered both parallel and serial concatenated
TTCM schemes [6], [18]. The parallel concatenated TTCM
scheme has employed two systematic feedback rate-3/4 8-
state TCM encoders with parity-check coefficients (in octal
form): h(0)=11, h(1)=02, h(2)=04, h(3)=10, and 16-QAM
modulation. In the serial concatenated TTCM scheme, a rate-
2/3 convolutional encoder with h(0)=13, h(1)=15, h(2)=17,
was applied as an outer encoder. As an inner encoder, we
used the same encoder as in the parallel TTCM scheme.
Hence, the overall code rate of the serial TTCM scheme is
Rc = 1/2. Complexity comparison of the algorithms has been
performed for software (i.e., computer based) implementation
of the TTCM systems.

Tables I and II depict the required number of operations
(i.e., additions, multiplications, comparisons, bit shifts, con-
version to integer and assignment) per single decoding step
of the algorithms for the parallel and serial concatenated
TTCM scheme, respectively. The following notation is used
in the tables (and in the figures of Section V): LM-AvN –
AvN Log-MAP, LM-r – PWL approximation with r = 3
terms, LM – Log-MAP, MLM – Max-Log-MAP. As shown in
Tables I and II, among the new algorithms the AvN Log-MAP
algorithm has the lowest computational requirements in both
TTCM scenarios. Its reduction in the number of operations
with respect to the Log-MAP is significant and amounts to
41.1% in parallel and 31.2% in serial TTCM scheme. When
compared with the Max-Log-MAP algorithm, it is found that
the AvN Log-MAP algorithm requires 34.0% and 43.3% more
operations, respectively. One can also easily notice that the
LM-n and LM-n-q algorithms have the same complexity. This
result was expected since, as it was mentioned in Section

TABLE I. REQUIRED NUMBER OF OPERATIONS FOR DECODING
ALGORITHMS PER SINGLE DECODING STEP FOR PARALLEL TTCM SCHEME

Algorithm LM LM-AvN LM-n LM-n-q LM-r MLM
Additions 680 512 392 392 680 344

Multiplications 0 24 24 24 0 0
Comparisons 357 213 357 357 357 189

Bit shifts 168 0 0 0 168 0
Conversion to int 168 0 24 24 0 0

Assignment 233 197 269 269 281 173
OVERALL 1606 946 1066 1066 1486 706

TABLE II. REQUIRED NUMBER OF OPERATIONS FOR DECODING
ALGORITHMS PER SINGLE DECODING STEP FOR SERIAL TTCM SCHEME

Algorithm LM LM-AvN LM-n LM-n-q LM-r MLM
Additions 492 432 312 312 492 264

Multiplications 0 24 24 24 0 0
Comparisons 249 165 261 261 249 141

Bit shifts 114 0 0 0 114 0
Conversion to int 114 0 24 24 0 0

Assignment 185 173 221 221 233 149
OVERALL 1154 794 842 842 1088 554

III, both algorithms differ only in the form of the correction
function fc(.).

Tables III and IV summarize the comparison of the algo-
rithms in terms of overall number of operations in the parallel
and serial scenarios, respectively. It can be easily seen that the
reduction in complexity of the LM-n and LM-n-q algorithms
against the Log-MAP is also substantial. Both algorithms are
in parallel TTCM scheme 33.6%, and in serial scheme 27%,
simpler than the Log-MAP algorithm. The PWL approximation
with r = 3 terms offers relatively modest reduction in the
number of operations, i.e., 7.5% and 5.7%, respectively.

TABLE III. COMPLEXITY COMPARISON OF DECODING ALGORITHMS
PER SINGLE DECODING STEP FOR PARALLEL TTCM SCHEME – OVERALL

NUMBER OF OPERATIONS

Algorithm Overall number of operations Reduction wrt LM
LM 1606 —

LM-AvN 946 41.1%
LM-n 1066 33.6%

LM-n-q 1066 33.6%
LM-r 1486 7.5%
MLM 706 56.0%

TABLE IV. COMPLEXITY COMPARISON OF DECODING ALGORITHMS
PER SINGLE DECODING STEP FOR SERIAL TTCM SCHEME – OVERALL

NUMBER OF OPERATIONS

Algorithm Overall number of operations Reduction wrt LM
LM 1154 —

LM-AvN 794 31.2%
LM-n 842 27.0%

LM-n-q 842 27.0%
LM-r 1088 5.7%
MLM 554 52.0%

From the analysis given in this section, we conclude that
the AvN Log-MAP, the LM-n and the LM-n-q algorithms offer
significant savings in decoding effort with respect to the Log-
MAP. This result makes them attractive for implementation in
iterative receivers and implies improved energy efficiency. It
should also be emphasized that all complexity comparisons
presented in Tables I–IV are per single decoding step in
a constituent SISO decoder and hence, these results do not
depend on the number of iterations or the block size of the
TTCM scheme.



V. ERROR PERFORMANCE COMPARISON

In order to evaluate performance of the simplified algo-
rithms, computer simulations were run for parallel and serial
concatenated TTCM schemes from Section IV. In simulations,
the AWGN channel and the uncorrelated, i.e., fully interleaved,
Rayleigh fading channel with perfect channel state information
(CSI) were considered. The block sizes of K = 684 and
K = 5000 symbols with the S-random interleavers with the
spreading factors S = 7 and S = 13, respectively, were as-
sumed. For comparison purposes, the BER performance curves
for the conventional Log-MAP (with a LUT storing eight
values) and Max-Log-MAP algorithms were also evaluated.
At the receiver, 8 decoding iterations for all algorithms were
performed.

BER performance evaluation results in the AWGN channel
for the parallel TTCM and both small (K = 684 symbols) and
large (K = 5000 symbols) interleaver sizes are given in Figs.
2 and 3, respectively. As it can be seen, the LM-n-q algorithm

Fig. 2. BER performance comparison of decoding algorithms in a parallel
TTCM scheme, AWGN channel, K = 684 symbols.

Fig. 3. BER performance comparison of decoding algorithms in a parallel
TTCM scheme, AWGN channel, K = 5000 symbols.

practically has the Log-MAP performance. It outperforms the
LM-n and LM-r algorithms by 0.1 dB and the AvN Log-MAP
by 0.2–0.3 dB at BER = 10−4. In turn, the AvN Log-MAP
algorithm is superior to the Max-Log-MAP by 0.1–0.2 dB at
the same BER level.

The results for the Rayleigh fading channel are shown in
Figs. 4 and 5. Here, the most of the simplified algorithms offer
the Log-MAP performance except for the AvN Log-MAP and
the Max-Log-MAP that are inferior by 0.2–0.3 dB at BER
level of 10−3 − 10−4.

Fig. 4. BER performance comparison of decoding algorithms in a parallel
TTCM scheme, uncorrelated Rayleigh fading channel, K = 684 symbols.

Fig. 5. BER performance comparison of decoding algorithms in a parallel
TTCM scheme, uncorrelated Rayleigh fading channel, K = 5000 symbols.

Figs. 6 and 7 illustrate BER performance results for serial
TTCM scheme in the AWGN channel and Figs. 8 and 9 in
the Rayleigh fading channel. For the AWGN channel, it is
observed that the LM-n-q algorithm is merely about 0.1 dB
inferior to the Log-MAP and outperforms by 0.1–0.2 dB the
LM-n and LM-r algorithms at BER of 10−5 for both block
lengths. The AvN Log-MAP algorithm is less than 0.15 dB
worse than the latter algorithms at the same BER level.



Fig. 6. BER performance comparison of decoding algorithms in a serial
TTCM scheme, AWGN channel, K = 684 symbols.

Fig. 7. BER performance comparison of decoding algorithms in a serial
TTCM scheme, AWGN channel, K = 5000 symbols.

Comparing to the Max-Log-MAP algorithm, the performance
of the AvN Log-MAP is improved by almost 0.5 dB. In the
case of transmission over a Rayleigh fading channel, it can
be noted that the LM-n-q algorithm achieves almost the Log-
MAP performance in the whole range of simulated SNRs. The
LM-n and LM-r algorithms reveal a loss of about 0.1 dB and
the AvN Log-MAP of 0.2–0.3 dB to the Log-MAP at BER of
10−4 − 10−5. As for the AWGN channel, the AvN Log-MAP
algorithm distinctly outperforms the Max-Log-MAP by 0.3 dB
at the same BER level.

VI. CONCLUSIONS

Simplified decoding algorithms for SISO decoders in itera-
tive receivers have gained considerable interest in recent years.
Several algorithmic approaches have been proposed aiming
for a simplification of the max∗ operator and thus reducing
the implementation complexity of the SISO decoders without
a substantial loss of decoding performance. The use of algo-
rithms with reduced computational requirements in iterative

Fig. 8. BER performance comparison of decoding algorithms in a serial
TTCM scheme, uncorrelated Rayleigh fading channel, K = 684 symbols.

Fig. 9. BER performance comparison of decoding algorithms in a serial
TTCM scheme, uncorrelated Rayleigh fading channel, K = 5000 symbols.

receivers is also favorable in terms of the energy efficiency
which is an important issue in wireless tranceivers design. In
this paper, some of these algorithms have been reviewed and
compared in terms of computational requirements and error
performance for the instance of turbo TCM transmission. In
particular, complexity comparisons to the optimal Log-MAP
algorithm reveal that significant reductions in the number of
operations required are offered by the AvN Log-MAP, the
LM-n, and the LM-n-q algorithms. For the TTCM schemes
considered, a simplification of up to 41.1% per single decoding
step has been obtained with the AvN Log-MAP algorithm. On
the other hand, simulation results for AWGN and uncorrelated
Rayleigh fading channels show that the performance degrada-
tion of these algorithms with respect to the Log-MAP is rather
small and amounts to 0.0–0.3 dB, depending on the algorithm,
TTCM scheme and the channel. The best BER performance
among simplified algorithms examined achieves the LM-n-
q algorithm. It should also be noted that similar results in
terms of complexity and BER performance of the algorithms



have been obtained for other code rates and modulation sizes.
Taking into account both computational requirements and error
performance, one can conclude that the LM-n-q, the LM-n
and the AvN Log-MAP algorithms are promising proposals
for application in SISO decoders.
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