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Abstract—The application potential of iteratively decoded ex-
tended quadratic residue (EQR) codes for machine-to-machine
(M2M) communication is explored. The M2M communication
typically requires energy-efficient transmission of short packets
making EQR codes good candidates for this emerging technology.
Novel performance and decoding complexity results are presented
for four EQR codes having codeword lengths previously unin-
vestigated under iterative decoding. The encoders and decoders
are constructed for three different iterative decoding algorithms.
Our study suggests limitations of current theoretical tools in
short error-correction code design and possible directions for
complexity reduction implying better energy efficiency.

I. INTRODUCTION

Automation, information and communication technologies
have rapidly become part of many aspects of human activities
ranging from industrial control and monitoring, traffic control
and home management to energy management, environmental
monitoring and security [1]. With the ever increasing inter-
connectedness of devices within such systems – often called
machine-to-machine (M2M), a critical part is the communi-
cation subsystem, which needs to be: 1) energy efficient, 2)
highly reliable and 3) delay intolerant. From the point of view
of error-correction techniques, these criteria can be related
to codeword length. In general, the shorter codeword length
means a shorter delay in processing of a conveyed message.
At the same time, corresponding decoders should be designed
in such a manner so as to be energy efficient.

M2M communication can be categorised by at least two
types of messages, control messages and state messages de-
scribing all network variables; both types are characterised by
short length packets. Error correction coding systems designed
for wireless LAN and cellular systems perform far from
optimally at short packet lengths. Thus, there is a requirement
for good coding schemes at short packet lengths and associ-
ated decoding schemes. From information theory, the channel
capacity is approached when the code length is very large, as
practically realised by low-density parity-check (LDPC) codes.
In the past two decades or so, however, attention has turned
to the study of shorter length codes, their efficient decoding
and their achievable performance [2], [3], [4], [5], [6].

In [5], the imperfectness of a code, for a given code rate,
information word size and target codeword error rate, was
defined as the signal-to-noise ratio (SNR) penalty of the code

with respect to the sphere-packing bound. It was found that
according to the imperfectness criterion, there did not exist
“nearly perfect” codes for information block sizes between
24 and 200 bits. For less than 24 bits, the authors marked
extended quadratic residue (EQR) codes as nearly perfect and
for greater than 200 bits turbo codes were shown as nearly
perfect.

The focus of this paper is on the iterative belief propagation
(BP) based decoding of EQR codes that belong to the previ-
ously mentioned gap - 24 to 200 information bit block sizes -
when three different decoding algorithms are employed. These
algorithms offer reduced complexity as compared to the max-
imum likelihood (ML) decoders and very good performance
for information block sizes below and equal to 24. The goal
of this paper is to: 1) design encoders and decoders for the
aforementioned codeword lengths which is not a trivial task,
and 2) present results on the code performance and complexity.
The observed complexity is going to suggest the decoders’
energy efficiency and if there is any space for the design
improvement.

Previous work on the BP based decoding of algebraic
codes (see [7], [8], [9] and [10]) considers a limited number
of codes of various classes including Bose – Chaudhuri –
Hocquenghem and quadratic residue (QR) codes, but does not
carry out a systematic study of QR and EQR codes of various
codeword lengths. Other related work can be found in [4],
[11], [12] and [13].

A. Paper Contribution and Organisation

The contributions of this paper are as follows:

• For all considered codes, new and optimized parity-
check matrices with reduced number of short cycles
are constructed, and a comparison of error correcting
performance before and after cycle reduction is provided.

• It reports on the performance and decoding complexity of
three iterative soft-decision decoding algorithms (RRD,
modified RRD and MBBP) for EQR codes of codeword
length 72, 74, 80 and 90 bits.

• For each of the studied codes, a count of the number
of cycles of length four and six for the corresponding
parity-check matrices is provided.



• The limitations of theoretical tools for the design of short
error-correction codes are highlighted.

Section II describes the construction of QR and EQR
codes. Section II-B explains automorphism groups of cyclic
codes and provides brief descriptions of the three decoding
algorithms studied. Section III provides: 1) definitions for
measuring the goodness of a code, 2) results for cycle re-
duction of the parity check matrices and 3) packet error rate
(PER) performance of the three decoding algorithms. Finally,
section IV gives some recommendations for using iterative soft
decoding algorithms with EQR codes.
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Fig. 1. M2M communication illustration.

II. SYSTEM MODEL AND SHORT EQR CODES

An illustration of one possible scenario of the M2M commu-
nication is shown in Fig 1, for traffic improvement and control.
There are three types of participants: controllers, sensors
in the vehicles and sensors on the road. The participants
can exchange two kinds of messages, control signals and
state information messages depicted by black and red arrows,
respectively. Of crucial importance is that the state information
and control messages be delivered in a timely manner, so
that vehicles execute appropriate commands at the appropriate
time. Therefore, the delay in such networks has to be limited,
and from the point of view of error-correction code design this
means that the decoding process has to be fast, hence of a low
complexity. Another feature of such control-communication
networks is that control signals are described by a relatively
low number of bits. In addition, an optimal solution has to
be energy efficient since the majority of devices will not be
connected to the mains. This can be provided by low decoding
complexity.

The aforementioned requirements point to application of
very short error-correction codes. The previous research [5]
suggests that QR and EQR codes could be the best candidates
for control-communication networks.

A. QR and EQR Codes

QR codes are cyclic codes of length prime p defined over
a field GF (l), where l is another prime which is a quadratic
residue mod p [14]. For an odd prime p, the non-zero squares
modulo p are called the quadratic residues mod p. There are
(p− 1)/2 quadratic residues and (p− 1)/2 non-residues.

Our analysis is focused on several binary quadratic residue
codes where l = 2. For l = 2, it is proven that the prime p
has to be of the form 8m± 1. Some examples of binary QR
codes are the [7, 4, 3] Hamming code and the [23, 12, 7] Golay
code.

There are several ways how the QR encoder can be realized.
One way is to use a special type of polynomials, called an
idempotent E(x), belonging to the ring Rn = GF (l)[x]/(xn−
1). The ring Rn consists of residue classes of GF (l)[x]
modulo (xn−1), where GF (l)[x] is the set of all polynomials
in x with coefficients from GF (l). The idempotent E(x) is any
polynomial which satisfies E(x) = E(x)2 = E(x2). For ex-
ample, for l = 2 and p = 4k−1, the idempotents can take the
following forms Eq(x) =

∑
r∈Q xr, Fq(x) = 1 +

∑
n∈N xn,

En(x) =
∑

n∈N xn and Fn(x) = 1 +
∑

r∈Q xr which are
used to generate the QR codes denoted by L, L̄, N and N̄ ,
respectively. Further, a generator matrix G for one type of QR
codes L̄ can be formed by taking the coefficients of Fq(x)
to represent one row of G, while the rest of the rows are
obtained by circularly shifting the first row. The second type
of QR code L is obtained by appending the all-one row to G
corresponding to L̄. Another important code class is that of
extended QR codes which is obtained by appending a parity
bit at the end of each codeword of a QR code. An interesting
characteristic is that for p = 4k− 1, the extended QR code L̂
of L is self-dual.

The main characteristics of QR codes are that they have
large minimum distance and large automorphism groups [14]
which will be described in the following section.

B. Iterative Decoding Of EQR codes

In this paper, three different iterative algorithms will be
tested in an additive white Gaussian noise (AWGN) channel.
All the three algorithms are based on the belief propagation
algorithm. As the parity check matrices for EQR codes are
dense, the probability of short cycles being present is higher
than for LDPC codes. Hence, decoding of EQR codes using
BP-based algorithms will be impaired. This is the reason
the three considered algorithms use the existence of large
automorphism groups of the EQR codes to modify a classical
BP decoding approach.

Let C be a block code of length n, then the permutation
group of the code C, Per(C), is defined as the set of per-
mutations of coordinate places which send C onto itself, also
referred to as the automorphism group in [15]. Let p be a
prime of the form 8m ± 1, then the projective special linear
group PSL2(p) is generated by the set of permutations of
{0, 1, 2, . . . , p − 1,∞} by S : i → i + 1, V : i → ρ2i and
T : i → − 1

i , where ρ is a primitive element of GF (p) [14].
Presented below is a brief description of the three iterative

decoding algorithms highlighting their salient features.
1) Random Redundant Decoding (RRD): The inner loop

of the RRD algorithm uses a BP decoding algorithm with the
addition of a damping factor, α [8]. An outer loop iterates over
different values of α. For each iteration of the inner loop,
a random group element (permutation) is chosen from the



automorphism group of the code and applied to the soft output
of the BP decoder. The applied permutations are accumulated
over the iterations with the inverse of the accumulated permu-
tation being applied at the end of the decoding procedure.

2) Multiple Basis Belief Propagation (MBBP): The MBBP
algorithm operates multiple BP decoders in parallel, each one
using a different parity-check matrix representation of the
dual code to decode the received codeword. For a [n, k, d]
linear code where k is the information word size, n codeword
length and d minimum distance d, at least the (n−k) linearly
independent or more linearly dependent codewords of the dual
code C⊥ can be used to form a parity-check matrix of C.
However, as noted in [7], not all matrices formed from such
codewords are suitable for decoding using BP, rather only
minimum-weight codewords of the dual code should, wherever
possible, be used. The reason for this is that parity-check
matrices for decoding should be as sparse as possible. For the
decoders which have converged to a valid codeword the output
is passed to a decision unit, the least metric selector (LMS).
The LMS unit selects the codeword which best satisfies the
decision rule ĉ = argmax

s∈S
Pr{y|ĉs}, where y is the received

codeword, S is the set of of decoders producing a valid
codeword, ĉs is a decoded codeword by the decoder s ∈ S,
and ĉ is the best choice for the decoded codeword according
to LMS.

3) Modified Random Redundant Decoding (mRRD): In [8]
Halford made the important observation that decoding with
an initial parity-check matrix H which has been permuted by
β, where β ∈ Per(C), is equivalent to decoding with the
initial parity-check matrix and a permuted codeword, β−1y.
The mRRD algorithm [10] combines the RRD and MBBP
algorithms by permuting the received codeword in an identical
manner to the RRD algorithm whilst having multiple BP
decoders all decoding with the same parity-check matrix. The
mRRD algorithm is, in essence, a parallelization of the RRD
algorithm. One important distinguishing feature of the mRRD
algorithm is the absence of the damping factor used in the
RRD algorithm.

III. CASE STUDY OF FOUR EQR CODES

A. Methodology

To analyse EQR code performance under the modified BP
decoding algorithms, the three criteria are employed: 1) The
code imperfectness, 2) The number of cycles of the parity-
check matrices, and 3) The stopping sets.

We first discuss the code imperfectness. It is introduced
in [5] which explores and reformulates Shannon’s sphere-
packing bound which is a useful performance benchmark for
comparing all codes [n, k, d] of a given code rate R = k/n.

Table I shows required minimal SNRs according to Shan-
non’s sphere-packing bound for code rate R = 1/2 versus
k to achieve a codeword error rate of Pw = 10−4. (The
SNR is defined as Eb/N0, where Eb is the energy per
transmitted information bit, while N0 is the so-called double-
sided power spectral density of the noise.) It can be observed

TABLE I
MINIMUM SNR TO ACHIEVE Pw = 10−4 AS A FUNCTION OF

INFORMATION WORD LENGTH, k, R = 1/2.

k 10 50 100 200 1000 10000

SNR (dB) 4.8 3 2.4 1.8 0.8 0.2

that the required SNR decreases with the information word
size k. Thus, theoretically, the longer the codeword the smaller
required minimum SNR. On the other hand, longer codes will
require more complex decoders to achieve the theoretically
predicted performance, as shown later.

Definition 3.1: For a rate R and information word length k,
the imperfectness of a code is the difference between the SNR
required to achieve a given codeword error rate, Pw, and the
minimum SNR provided by Shannon’s sphere packing bound
for the same R, k and Pw. A code is considered nearly perfect
if it has an imperfectness less than 1 dB.

In [5], it is shown that EQR codes [8, 4, 4], [24, 12, 8] and
[48, 24, 12] have an imperfectness of 0.5. The current work
explores the imperfectness of longer EQR codes and their
decoding complexity for the range of k between 30 and 50
bits.

The second criteria relevant for the analysis of BP type
decoders is the number of cycles of length four and six and
sparseness of the Tanner graph corresponding to a decoder
parity check matrix. Since EQR codes have high-density
parity-check matrices, the likelihood of having short cycles is
much greater compared to LDPC codes. Thus, it is necessary
to design parity check matrices in a way that minimizes the
number of non-zero entries. In [7], a construction method is
proposed where each parity check matrix consists of rows
corresponding to cyclic shifts of one minimum-weight code-
word of the dual code. For all EQR codes treated further, the
algorithm found in [16] is used to find the minimum-weight
codewords of a dual EQR code.

To further improve error correcting performance of the
codes, a cycle reduction algorithm of [9] transforms previously
designed parity check matrices. The cycle reduction algorithm
is a brute-force algorithm which performs exhaustive linear
transformations of a parity check matrix in order to reduce
the number of cycles of length four and six.

B. Decoding Performance and Discussion

At the transmitter, the information words are randomly
generated, encoded using the generator matrix for one of
chosen EQR codes, modulated by a binary phase-shift keying
and then passed through an AWGN channel. At the receiver,
the log-likelihood ratio (LLR) of the received codeword is
calculated and passed to the decoding algorithm under test.
We examine EQR codes [72, 36, 12], [74, 37, 14], [80, 40, 16]
and [90, 45, 18].

For the RRD and mRRD decoding algorithms, which de-
code with a single parity check matrix, the set of matrices
generated from the minimum-weight codewords of the dual



TABLE II
THE NUMBER OF MINIMUM-WEIGHT CODEWORDS FOUND BY THE

ALGORITHM IN [16]

.

k 36 37 40 45

No. of codewords 35 90 634 2423

TABLE III
THE MBBP DECODER PARAMETERS.

n No. iterations/matrices No. decoders. Total no. of iter.

72,72CR 100 35 3500

74,74CR 100 90 9000

80,80CR 20 634 12860

90 10 2423 24230

90CR 60 300 18000

code [7] is searched to find the one with the lowest cycle
count. This parity check matrix is then used for the decoding
process. For the MBBP decoding algorithm, the whole set or
a subset of the decoding matrices is employed depending on
a desired complexity and/or performance.

Table II shows the number of minimum-weight codewords
of the dual EQR codes found by the algorithm proposed in
[16]. For each of the codewords, a corresponding parity check
matrix is constructed and used by the decoding algorithms.

Fig. 2 shows the average number of cycles of length 4 and
6 for the parity-check matrices of the EQR codes given in
Table II. It can be observed that the number of cycles grows
quickly with code length and even after an application of the
cycle reduction algorithm the number of short cycles is still
large.
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Fig. 2. Cycle count for parity-check matrices of the EQR codes pre and post
cycle reduction.

For the MBBP algorithm, Table III presents the number
of decoding matrices and decoding iterations used for the
different codes. It should be noted that the choice of param-
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Fig. 3. [72,36,12] Extended QR code PER.

eters is found empirically, where the goal is to achieve the
PER of 10−4 with an SNR in the region between 4.5 and
6 dB. The notation CR refers to the case when a decoding
parity-check matrix has a reduced number of cycles. E.g., for
the code [72, 36, 12], the number of iterations per decoder
is 100, while the number of the decoders is 35, for both
decoding algorithm versions, with and without cycle reduction.
One should note that these parameters are chosen to observe
theoretical limitations of the codes; it is understood that
practical applications would possibly not permit such a big
number of decoder iterations and number of decoders.

For the RRD algorithm, all codes are run with a maximum
of 30 iterations of the BP algorithm, 30 iterations of the
outer loop corresponding to modification of the damping factor
and 30 iterations of the loop corresponding to selection of a
random permutation. For the mRRD algorithm a maximum of
30 iterations of the BP algorithm and 30 iterations of the outer
loop corresponding to selection of a random permutation were
used for each of the 15 decoders used in decoding with the
same parity check matrix.

Fig. 3-6 present the PER results for the MBBP, RRD and
mRRD algorithms. Two sets of plots are shown for each code
and decoding algorithm, with and without application of the
cycle reduction algorithm to the parity check matrix for the
respective code. Those curves marked CR refer to the cycle
reduced results. Also shown on the graphs is the SNR required
to achieve a PER of 10−4 as given by the Shannon’s sphere
packing bound.

Although Fig. 2 indicates a significant reduction in the
number of cycles of length four and six of the decoding parity-
check matrices, this however has a little impact on the PER
for the four EQR codes. We suspect this happens because the
number of short cycles remains large even after application of
the cycle reduction algorithm.

Analysis of results from decoding with the MBBP algorithm
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Fig. 4. [74,37,14] Extended QR code PER.
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Fig. 5. [80,40,16] Extended QR code PER.

shows that the PER curves for the first three codes intersect the
10−4 line between 4.5 and 5 dB. The fourth code [90, 45, 18]
requires a larger SNR to reach a PER of 10−4. For the
latter code, since the number of potentially good parity-check
matrices found is large (see Table II), and the cycle reduction
algorithm is time consuming, a subset of 300 out of 2423
parity-check matrices has been chosen. To keep the overall
number of decoding iterations comparable with the case when
there is no cycle reduction of the parity-check matrix, the
number of decoding iterations per matrix is increased to
60. However, the simulation results for this code with cycle
reduction, show that the present choice of parameters for the
decoder – 60 decoder iterations and 300 decoders – is not
enough to match the PER performance of the same code with
a larger number of the decoder matrices and without cycle
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Fig. 6. [90,45,18] Extended QR code PER.

reduction. From Definition 3.1 and for the targeted PER of
10−4, the resulting imperfectness with the MBBP decoder for
the codes [72, 36, 12], [74, 37, 14], [80, 40, 16] and [90, 45, 18]
are 1.3, 1.5, 1.6 and ≥ 1.9 dB, respectively. Thus, it can be
said that only the first code with a chosen set of the MBBP
decoder parameters is close to being nearly perfect. If possible,
improving the performance of these codes would require a
larger number of BP iterations and/or decoding matrices which
raises the question of practicality of such coding schemes.
Comparing the imperfectness to other codes found in [5],
at least the first three EQR codes outperform terminated
convolutional codes of corresponding codeword lengths and
constraint-length-7 whose imperfectness is 1.7, 1.72 and 1.8
dB, respectively. However, this is achieved at the expense of
larger complexity.

For the RRD and mRRD algorithms, the SNR required
to achieve a PER of 10−4 ranges from 4.75 to 5.75 dB.
With the exception of the [80, 40, 16] code, application of
the cycle reduction algorithm makes little difference to PER
performance. For the [80, 40, 16] code, the cycle reduction
gives a small improvement for both the RRD and mRRD
algorithms between 0.1 and 0.2 dB.

Overall, the MBBP decoder has better performance than
the other decoders for all four codes. We assume that this is
due to the greater diversity afforded by multiple parity check
matrices. Our simulations show similar variation in behaviour
for the mRRD algorithm when decoding with more or less
parity check matrices. Table IV shows the SNR required at
the PER of 10−3 for the MBBP and RRD algorithms, the
∆SNR column shows the difference between the SNR values.
The final column gives the number of decoding matrices
used by the MBBP algorithm. As the number of decoding
matrices used by the MBBP decoder increases, the difference
in the required SNR to achieve the PER of 10−3 increases,
highlighting the benefit of having more decoding matrices.



TABLE IV
COMPARISON BETWEEN MBBP AND RRD DECODERS AT PER=10−3 .

n MBBP SNR RRD SNR ∆SNR MBBP mat.

72 4.09 4.33 -0.24 35

74 4.34 4.76 -0.42 90

80 4.44 5.04 -0.60 634

90 4.39 5.20 -0.81 2423

From Table III the maximum number of decoding iterations
used by the MBBP algorithm for the four codes is seen in the
fourth column. The RRD algorithm allows for a maximum
of 30 × 30 × 30 = 27000 decoding iterations. Whereas, the
mRRD algorithm allows for a maximum of 30 × 30 × 15 =
13500 decoding iterations. For implementation purposes, the
RRD and mRRD algorithms have the advantage of using only
one parity check matrix, thereby greatly reducing the amount
of storage required compared to the MBBP algorithm. The
permutation step required by the RRD and mRRD algorithms
is easily implemented in hardware by appropriate addressing
of the parity check matrix memory.

Another factor affecting the error correcting performance
of iterative decoders is that of stopping sets [17]. Counting
the stopping sets is time consuming; we ran a stopping
set counting algorithm for the [72, 36, 12] and [74, 37, 14]
codes and found that all 35 and 90 parity-check matrices,
respectively, did not contain stopping sets of length smaller
than 8. So, we were not able to apply parity check matrix
optimization based on a criterion suggested in [7]. From this
point of view all the parity check matrices were equivalent. It
seems that at least in this case, the stopping set criterion is of
little help. Other criteria based on the trapping sets and pseudo-
codewords [18] could be more helpful for AWGN channels.

C. Energy Efficiency and Decoding Complexity

The previous analysis demonstrates that design of error-
correction schemes for M2M communications is a challenging
problem. It affects all three important features of the M2M
network, reliability, energy efficiency and delay. Improved
reliability and performance require larger decoding complexity
in terms of number of iterations and used decoding matrices (in
the case of MBBP decoders), while this implies increased en-
ergy consumption. Moreover, as the codeword length becomes
larger, the decoders are more complex and energy hungry.
Therefore, future research should address this tradeoff among
reliability, performance and energy efficiency for moderate
codeword lengths.

IV. CONCLUSION

Since M2M communication requires a short packet trans-
mission, this paper analyses a number of issues which are re-
lated to the design of short EQR error correction codes subject
to iterative BP type decoding. Three different decoding algo-
rithms were examined for four EQR codes having codeword

lengths from 72 to 90. We demonstrated practical difficulties
encountered in the decoder design for mentioned codeword
lengths such as minimum-weight codeword exploration, cycle
and stopping set counting and decoder complexity. We found
that some of the classical theoretical tools for the decoder
design – e.g. cycle counting and stopping sets – could be
of little help when moderate to larger codeword lengths
are considered. It was observed that the decoder complexity
increases rapidly with codeword length, and a true cost of
complexity can only be understood when analysing a hardware
implementation.
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