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Abstract—The design of high speed wireless networks
is a challenging task. In this paper, basic problems of
an implementation of a 100 Gbps parallel data link
layer processor are discussed. Such a high data rate
requires a fast and low latency memory for Automatic
Repeat reQuest (ARQ). Two popular memory types were
investigated. Use of a DDR3 memory may lead to too
long latencies, while use of a Field Programmable Gates
Array (FPGA) on chip block RAM memory requires a
wide memory bus and has the problem that the memory
size is limited. Forward Error Correcting Codes (FEC)
algorithms have to be chosen very carefully because
of complexity issues. A complicated FEC may lead to
huge structures and thus hardware overhead (more
than 20 Virtex7 FPGAs). Even with less complicated
FEC, there is probably a need to use multiple FPGAs
and fast interconnect interfaces between them. For this
reason high speed serial input-output transceivers are
introduced. Another problem is the installation of such
a network interface card in a PC system; all introduced
high speed development kits did not support a bandwidth
of 100 Gbps for PCI express.
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I. INTRODUCTION

Wireless systems are a big driver of new and chal-
lenging research directions. There are several use cases
for ultra-high speed wireless links. One of the most
data-rate intensive applications is video streaming. The
Japanese SuperHiVision system requires a resolution of
7680 x 4320 pixels at 60 frames per second (72 Gbps)
[1]. Wireless systems, which support transfer of such
a stream, may be used to connect several devices: dis-
plays, cinema systems, projectors, multimedia centers,
etc. In this paper, we will focus on a few challenges
and we will introduce a possible architecture of such

a system. To achieve 100 Gbps transmission, more
than a fast physical layer (PHY) is required. Wireless
transmission at that data rate may lead to a high bit
error rate (BER). The data link layer is responsible for
correction and/or retransmission of corrupted frames.
That process must be completed in a few nanoseconds.
Intensive frame retransmissions and overhead due to
error correction codes may waste a significant part
of the throughput. It is important to find a trade-
off between complexity and performance of different
algorithms. The overhead of the data link layer and
other layers have to be reduced to an acceptable level.
This can be achieved by using complicated algorithms
and large buffers, but limitations due to hardware
capacity must be considered. This paper is related to
End2End100 project and cooperate with other pro-
posed projects of the program DFG Special Priority
Program 1655 (SPP1655) on “Wireless 100Gbps and
beyond”, e.g. the Reall00G.com and Reall0O0G.RF.
This group of projects will investigate a complete
wireless 100 Gbps system at ultra-high frequencies
(250-330 GHz). In the End2End100 project, our main
technical idea is to investigate an innovative concept
for a Network Interface Card (NIC) working at 100
Gbps wireless.

II. RELATED WORK

Several research efforts have addressed to highly ef-
ficient wireless protocols. Some of the basics mech-
anisms are frame aggregation and acknowledgment.
Those and similar topics are investigated in [2], where
ARQ schemes are tested by analytical models. [3]
demonstrates the effectiveness of link adaptation in the



cellular IS-856 standard. Similar estimations are done
in [4] for 802.11a wireless LANSs. [5] and [6] consider
hybrid-ARQ schemes for wireless links. Authors in
[7] presents a 60 GHz PHY and MAC demonstrator
with frame aggregations and ARQ. All these papers
introduce algorithms, which can be used for good-
put improvements for the 100 Gbps data link layer.
Other interesting techniques are forward error correct-
ing codes (FEC) and architectures of a FEC system
for ultra-high speed data links. Some authors consider
packet level FEC [8], [9] for wireless transmission,
but we will focus on an implementation of a block or
a convolutional FEC code for 100 Gbps transmission.
Some previous work is related to this topic and many
papers discuss the throughput and calculational effort
of such solutions [10]. Throughput limitations for FEC
systems are known issue for years [11] and 100 Gbps
transmission probably requires an array of processors
to achieve the ultra-high target data rate. We will use
some of available implementations of two popular FEC
algorithms (RS, Viterbi decoder) and we will test how
fast this solution can run on a modern Virtex7 FPGA
(Field Programmable Gate Array) board.

Some work related to 100 Gbps wired transmissions
has been published in [12] and a 100 Gbps Ethernet
standard [13].

III. CHALLENGES

Ultra-high speed wireless communication poses many
challenges to the data link layer. In this section, we
describe the major challenges of protocol processing
and their impact on the hardware.

A. Data Link Layer

Although there are already 100G Ethernet demon-
strators [14], wireless communication still cannot
achieve such high data rates. The major reason is
the more complex processing, mainly required to deal
with higher bit error rates of wireless communica-
tion. Furthermore, wireless transmissions suffer from
short coherence times, meaning the channel changes
frequently. To deal with these problems, wireless
transceivers apply various means such as complex
baseband processing, ARQ (Automatic Repeat re-
Quest) or FEC (Forward Error Correction).

Automatic repeat request and forward error correction

ARQ is one of the major solutions that can deal with
transmission errors [15]. That is, when the receiver
does not receive a frame correctly, the transmitter will
send the frame again. Obviously, ARQ may lead to
performance degradation, as the transmitter waits for
acknowledgments (ACK) before sending next frames.

To solve that problem, the receiver sends a single ACK
for several frames. This solution improves efficiency
considerably [7], but requires more memory and a
more complicated state machine on the TX and RX de-
vices. In the case of ARQ use we speak of “optimistic”
error correction since faults are corrected only after
they have been detected by the protocol layer. Thus
extra redundancy is only inserted into the transmitted
packet for error detection.

Another group of solutions that deal with transmission
errors are FEC algorithms. The transmitter adds extra
information to the frame, and/or decodes the frame
according to some schema. It allows the receiver to
repair, depending on the used code several bit errors,
which occurred during transmission. Clearly, this re-
duces the number of transmitted frames but requires
extra processing on both the sender and the receiver.
Furthermore, FEC increases also the frame size, since
it adds extra recovery data to frames. In the case of
FEC we speak of “pessimistic” error correction since
the sender already incorporates redundant information
into the packet that can be corrected by appropriate
error decoders on the receiver side.

Both ARQ and FEC must perform extremely quickly,
using only a few nanoseconds processing time for a
single frame, to support 100G communication. Fur-
thermore, 100G transceivers with ARQ need a large
amount of memory to store transmitted but not ac-
knowledged frames. We discuss these challenges later
in this section.

Splitting and merging

The IEEE 802.3ba standard uses parallel lanes [16] to
deal with 100 Gbps transmission. A similar approach
can be adopted for 100G wireless transmission, that
is, there may be several physical channels to support
such high data rates. Furthermore, even if there is
only a single physical channel, we may still split
the data stream into several parallel lanes in order to
achieve fast enough frame processing. Figure 1 shows
the vision of our demonstrator platform with parallel
processing. Parallel processing of the data streams
requires splitting the stream into several lanes at the
transmitter and merging it at the receiver. Bearing in
mind that a single frame must be handled within a
few nanoseconds to support 100G transmission, split-
ting and merging is extremely challenging for 100G
wireless networks.

B. Hardware
Memory

In general, transceivers need memory to store outgoing
and incoming frames. In the former case, the applica-
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tion or higher-layer protocols write outgoing data to
the TX buffer. In the RX path, the transceiver writes
incoming frames into the RX buffer, which is often
available to higher-layer protocols. Clearly, too small
buffers result in congestion problems, leading either to
packet losses or require some extra protocols to realize
flow control. Using flow control avoid packet loss but
leads to considerable performance reduction.

The problem of too small buffers is even more chal-
lenging when ARQ is applied. That is, the sender
stores all outgoing frames in the buffer until the re-
ceiver sends an acknowledgment (see Figure 2). Since
wireless communication suffers from a high bit error
rate, we assume that ARQ and other solutions will be
inevitable in 100 Gbps wireless systems to deal with
transmission errors. However, ARQ with high-speed
communication requires sufficient memory to store the
transmitted frames. For example, at 100 Gbps data rate,
the transceiver needs 12.5 GB of memory to store
the frames transmitted over the last second. Similar
problems arise on the receiver side, especially when the
data link layer must assure the right order of incoming
frames.

Although state-of-the-art computers have a few GB
DDR3 memory available, such memory is too slow
for 100 Gbps packet processing. The estimated access
time of DDR3 memory (800MHz I/O clock) is 45ns,
whereas packets in 100 Gbps networks arrive every 6.7
ns [12].

Prototyping of network cards is typically done on
FPGA boards, and we will follow this idea. Such
boards have limited amount of high-speed memory,
needed for 100 Gbps packet processing. For example,
a typical Virtex7 FPGA can buffer only about 4.5 MB
of data in Block RAM memory [17]. With such an
amount of memory, the TX or RX buffer will overflow
after about 370 us.

The problem of limited memory in high-speed wireless
communication was addressed in Ref. [18], which
introduces a 60 GHz transceiver with a data rate up
to 5 Gbps. The transceiver works well with a buffer
size around 1 MB, and more memory does not improve
the performance significantly. If we theoretically scale
this system to support 100 Gbps, i.e. by factor 20, we
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will need about 20 times the amount of memory for
buffering.

Another high-speed wireless transceiver [7], based on
60 GHz frequency, supports a data rate of 1.2 Gbps.

Processing effort

When sending or receiving a frame, both the
transceiver (TX) and the receiver (RX) perform some
operations. For example, the TX updates frame head-
ers, calculates checksums, and splits data into frames
and segments. To achieve the 100 Gbps data rate, each
frame must be processed within a few nanoseconds,
depending on the frame size (see Figure 3). For in-
stance, TX and RX must process a frame of 500 bytes
within 40 nanoseconds. Clearly, this puts an enormous
stress on the processing device such as a processor or
FPGA.

Nonetheless, there are already 100 Gbps Ethernet
systems, which work even on state-of-the-art generic
purpose processors, that is, four Intel Xeon cores
without use of hardware accelerators [12]. Although
such a configuration supports the 100 Gbps data rate,
it dissipates as much as 650 Watts. Furthermore, since
wireless communication needs more processing power
than Ethernet, for instance to deal with higher bit error



rates, this would lead to even higher power dissipation.
This shows clearly the need of hardware solutions,
such as an FPGA or ASIC, when building a 100 Gbps
wireless transceiver.

Among all operations carried out on wireless
transceivers, Forward Error Correction (FEC) requires
the most processing power. To outline this problem, we
estimated resources needed to implement two major
FEC solutions, a Viterbi decoder and Reed-Solomon
code, on FPGA platforms. In the former case, we
consider our Viterbi decoder implementation based on
five-bit soft coding which works with a 170 MHz clock
on a Virtex7 FPGA. To support 100 Gbps wireless
transmission, we would need about 589 such decoders
working in parallel (100 Gbps / 0.17 GHz gives 589
instances of the decoder). Our Viterbi decoder requires
almost 7 million LUTs (look-up tables) and more than
10 million FFs (flip-flops) on Virtex7 FPGA. To imple-
ment all decoders needed for 100 Gbps transmission,
we would need more than 20 FPGA boards in the best
case, as we did not consider extra resources for routing,
etc. We carried out a similar evaluation of our Reed-
Solomon (RS) implementation, which limits the FPGA
clock to 270 MHz and achieves 2 Gbps throughput.
Thus, we would need about 100 such RS-coders, 50
TX encoders and 50 RX decoders, to support 100
Gbps transmissions. It would lead to about 10 thousand
LUTs and 8 thousand FFs, which should fit into a
single Virtex7 FPGA.

IV. ARCHITECTURE

In previous paragraphs, some challenges for the
planned activity are listed. We will now consider an ex-
ample architecture of the proposed data link processor.
To run at the planned data rate, most probably parallel
lanes processing will be needed. One solution is to
map parallel lanes to FPGAs. An example architecture
with two lanes is shown in Figure 4. Two lanes will
probably not be enough, but this structure is presented
to keep the figure to reasonable size. The main idea is
to use frames which are divided into segments, where
the parts may have a dynamically changing size in view
of the channel quality. The smallest retransmission unit
will be the segment. Each segment may be protected
by an individual FEC code, but this will depend on the
channel quality. When the channel has a low Packet
Error Rate (PER) and the channel quality indication
is beneficial, the FEC can be disabled to increase the
throughput. An ARQ scheme will provide additional
robustness. The ARQ will work on segments, so that
in case of frame errors only the defective segments
must be retransmitted, but not the whole aggregated
frame. Optionally, a FEC code can be appended to the
end of the frame to protect whole structure (header
and segments). To find the optimal segment and frame

lengths, ARQ scheme, and FEC strategy, a Matlab
simulation of the data link layer will be conducted.
We will also consider some simplifications and the
difference between planned and optimal settings will
be estimated. It may happen that the optimal solution
from the simulation will be too complicated to im-
plement in a real demonstrator, thus there might be
the need to introduce further simplifications into the
planned realization.

Figure 5 presents a possible connection and separation
of TX lane between the Tilera CPU board and the
FPGA part. This is only one of several possible imple-
mentations of a software-hardware solution. Memory
intensive operations could be realized in CPUs and
implemented in C, calculation intensive operations
could be calculated on FPGAs. The C implementation
should speed up coding time, but the problem of
memory latency must be considered. There is no other
possibility to connect the FPGA with the Tilera board
than a 10 Gbps Ethernet. The Tilera board has no other
interfaces.

Another important aspect of a 100 Gbit demonstrator
is the possibility to install in some other system. We
consider a Network Interface Card (NIC) that can be
installed in a PCI express (PCle) slot in a desktop
PC or a server machine. First of all, we need to
estimate how fast one PCI express slot is. Such a port
theoretically supports slightly more than 100 Gbps in
peak throughput. There are many PC motherboards
which support PCle 3.0 x16, so there is at least one
interface on a modern PC which theoretically supports
such a fast NIC [19]. On the other hand, there is
the need to find hardware, which is equipped with a
PCle 3.0 x16 ports. Let us consider four solutions:
the Virtex FPGA VC707 and VC709 development
kits, a software solution from Tilera (TILEncore-Gx72)
with 72 CPU cores, and a COMBO-100G FPGA card
from Inveatech. Unfortunately, none of the suggested
hardware solutions currently supports the PCle 3.0 x16
[17], [20], [21], [22]. The last solution from Inveatech
could theoretically support 100 Gbps but at this time,
there is only little information available, so that it
currently cannot be considered as an implementation
platform. The VC707 is equipped with PCle 2.0 x8,
VC709 and TILEncore-Gx72 with PCle 3.0 x8 and
this is less than 100 Gbps [19]. None of the sug-
gested development kits can support a desktop PC with
the required bandwidth. A development board should
also support an interface to a baseband processor.
We again consider the previously mentioned boards.
The Tilera board may support up to eight 10 Gbps
Ethernet ports. That is not enough for the planned
implementation and there is no other interface, which
can be used. Alternative FPGA development kits are
equipped with up to four SFP/SFP+ ports. This is also
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not enough to transfer 100 Gbps. The Virtex7 device
has another possibility to connect to the baseband
processor, namely GTX transceivers. Each transceiver
can transfer up to 12.5 Gbps [17]. To achieve the
requested data rate at least eight channels are needed,
but VC707 and VC709 do not support so many GTX
channels in the default configuration. Some FMC-HPC
extensions boards are required to get access to all the
on-board GTX transceivers. The best solution is to
use a VC7203 kit, where up to 36 GTX transceivers
are supported, but such board has no PCle port at
all [23]. There are several problems with the choice
of a suitable development platform because of limited
connectivity. For this reason, probably more than one
of the discussed boards has to be used.

V. CONCLUSION

An implementation of a 100 Gbps wireless system is
a challenging task. There is a problem when choosing
an implementation platform since most of the available
developments boards cannot achieve 100 Gbps due
to interface limitations. Another problem is the FEC
system. For Viterbi decoders a different solution than
the current IHP implementation is needed. For example
the IP core provided by Xilinx is a more promising
solution (faster and smaller, but not in the scope of this
paper because of licensing restrictions). Top priority is
to find a solution, which requires very little resources.
Fifty or more parallel lanes probably are required.
Another aspect is memory performance limitations for
this reason internal FPGA block RAMs are proposed.
The authors plan to use multiple FPGAs connected in
parallel to achieve the 100 Gbps data rate.
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