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Abstract—Many image and signal processing problems benefit
from quaternion based models, due to their property of process-
ing different features simultaneously. Recently the quaternion
algebra model has been combined with the dictionary learning
and sparse representation models. This led to solving versatile
optimization problems over the quaternion algebra. Since the
quaternions form a noncommutative algebra, calculation of the
gradient of the quaternion objective function is usually fairly
complex. This paper aims to present a generalization of the
augmented directional method of multipliers over the quaternion
algebra, while employing the results from the recently introduced
generalized HR (GHR) calculus. Furthermore, we consider the
convex optimization problems of real functions of quaternion
variable.

Index Terms—Numerical optimization, ADMM, Quaternions

I. INTRODUCTION

The quaternion algebra was introduced by Hamilton in his
seminal paper in 1843. Since then, it found applications in
many different fields ranging from image processing [1], [2]
and computer graphics [3] to design of space-time polarization
block codes [4]. Since three imaginary units are well suited for
representation of three color channels (R, G and B), recently
the quaternions have been combined with dictionary learning
methods [S], [6]. In all those applications there is a great
interest for efficient numerical optimization algorithms.

In most of the current approaches to quaternion analysis,
the main difference is in the definition of quaternion analy-
ticity. The quaternion derivative is then defined for analytic
quaternionic functions of quaternion varables [7]-[9]. In those
settings one is limited only to a certain class of functions,
in particular quaternion analytic functions. However, most of
the functions in quaternion signal processing do not obey
this property. Many of the optimization functions that appear
in quaternion signal processing are non-analytic real cost
functions of a quaternion variable. This problem was addressed
in [10], where the authors connect the #; and ¢5 minimization
problems over the quaternion algebra with L5 ; and /5 norm of
the corresponding real matrix problems, respectively. However,
this approach is applicable only when a suitable isomorphisms
exist that faithfully represent the original problem in the real
setting. For some important problems, such as the ¢y-norm
minimization problem, finding the corresponding real repre-
sentation in this setting is not evident. Thus, it is not possible

to simply rewrite every quaternion function and operator as an
equivalent real matrix problem.

A recently introduced new notion of the quaternion analyt-
icity, also known as the generalized HR (GHR) calculus [11],
allows working directly with real cost functions of quaternion
variable. This approach represents the natural extension of
the well-known complex Wirtinger calculus, which has been
widely used in complex-valued signal processing. The GHR
theory proves to be useful for versatile optimization problems
which involve quaternion valued elements [12].

Certain optimization tools have been extended to the quater-
nion algebra in [13], in the context of audio separation. In
particular, the authors there solve the Principal Component
Pursuit (PCP) by using proximal operator that they define
in the complex and quaternion domains. This approach is
confined to the ¢;- and trace-norm regularization functions.
Promixal operators for more complex optimization functions
over quaternions have not been investigated yet.

Different algorithms that involve linearization or splitting of
functions and/or variables are a special case of the proximal
operator [14]. Among these is the alternating directional
method of multipliers (ADMM) [15], [16] as a variant of the
augmented Lagrangian scheme and has been widely used in
signal/image processing, optimal control and machine learn-
ing. To the best of our knowledge ADMM has not been studied
beyond real and complex numbers and thus is not in the scope
of the quaternion algebra yet.

In this work, we propose the ADMM method over the
quaternion algebra, which we call Q-ADMM. In particular,
we show that our model naturally generalizes the classical
ADMM algorithm. In the ADMM method, where the objective
terms are being handled separately, the functions are accessed
only through their proximal operators. Thus, there is a need
for an elegant and efficient way of calculating derivatives of
the objective quaternion function. We will show and explain
that by using the GHR calculus, iterations in the proposed Q-
ADMM algorithm can be obtained in a compact and intuitive
way directly over the quaternion algebra. Finally, we illustrate
on a couple of examples that the introduced algorithm quickly
solves the optimization problems frequently appearing in
quaternion optimization, signal processing, machine learning
and statistics.

The organization of the paper is as follows. In Section II



we give the preliminaries about quaternion linear algebra and
GHR calculus. Section III contains the detailed explanation of
the proposed Q-ADMM method. In the same section we show
that the proposed method directly solves common examples
from quaternion signal and image processing and illustrate
it on an example of randomly generated data. Section IV
concludes the paper.

II. PRELIMINARIES
A. Quaternion algebra

The quaternion algebra is a 4-dimensional unital, distribu-
tive algebra over R with basis {1,e1,eq,e3} where 1 is the
multiplicative identity and e, es, €3 are imaginary units that
satisfy ef = —1. It holds that e;e; = e3 and e;e; = —eje;,
for i £ 7, 4,5 € {1,2,3}.

If z € H is a quaternion element then it can be written as
the sum of the real and imaginary part, i.e., as

3
T =xg+x1€1 + -+ Tze3 =X+ g x;e;
i=1
where each z; € R. The conjugate of a quaternion is defined
— 3 o .
as T = xg — Zi:o x;e; and the norm is introduced as

2| = V2% = VEz =

It is important to stress that the quaternion algebra is non-
commutative but associative. This means that for arbitrary
x,y,2 € H: xy # yx but z(yz) = (zy)z. More about
quaternion linear algebra can be found in [17]. It will also be
useful to use the fact that for the real and complex part of x
it holds that

x%+x%+x%+x§. (1)

2Re(z) =2x+7Z and 2Im(z)=z-T. 2)

B. Quaternion vectors and matrices

The quaternion vector x € H"*! is a vector where each
entry is a quaternion. Often it will be useful to write it as

X = X + X1€1 + Xse3 + xX3eg 3)

where now each vector x; € R"*! for i = 1, ..., n. Similarly,
the quaternion matrix A = [a;;];"52, € H™*™ is a matrix with
entries in H. Also, we can write it as

A=Ap+ Aje; + Azey + Ages, 4

where each A; € R™*" fori=0,1,2,3.

The conjugation can be extended to vectors and matrices.
The conjugate transpose matrix of a matrix A = [aij]zlj’zl €
H™*"™ is defined as

A = AT = [g5;]" "

i c anm.
s

The inner product can be introduced as a function (-, -) : H" x
H" — H given by (x,y) = xfy = Y7 | Z;y;. Then, for
a quaternion vector x € H"*! we can define its norm by
Ix]13 = x"x.

If x = xo+x1€1+x2e2+x3€3 € His a quaternion, then we
define the real-vector representation v(z) € R**! as v(z) =

[#o 1 22 x3]T. In this way the real-linear isomorphism v :
H — R**! is obtained. By multiplying arbitrary x,y € H,
there holds that

v(zy) = x(@)v(y) (5)

where x(z) € R*** is given by

rgo —T1 —T2 —I3
T To —I3 T2
x(x)= : (6)
T2 z3 To —T1
r3 —Xog T i)

In this way we define the real, linear, injective map x : H —
R**4, The same maps can be extended to quaternion vectors
and matrices and if we use the same notation this means that
we have:

o v(xo)
v HY o Ry = , (D
Tn v(2y)

for x1,...,x, € H and if a; ; € H are entries of the matrix

= [x(ai)]i3Z:- (®)

Thus, we are able to define multiplication between quaternion
vectors and quaternion matrices by using the real matrix
multiplication. Indeed, for every A € H™*" and every
x € H™ ! it holds that ¥(Ax) = x(A)v(x). Note that for
x € H™*! it holds ||x||2 = ||¥(x)||2. The proofs of all the
matrix representations presented here can be found in [17].

X:men_>R4m><4n, X([ai,j]zljzl)

C. Generalized HR (GHR) calculus

Most of the recent approaches to quaternion analysis are
based on the HR calculus and its generalization GHR calculus,
which can handle non-analytic functions directly in the quater-
nion domain [12]. Similar to the Wirtinger complex calculus
[18], in the GHR calculus the derivatives are being taken with
respect to a quaternion variable and its involutions. The main
advantage of this approach is that the derivatives of quaternion
matrix functions can be calculated directly in an elegant way,
without using the isomorphism with real vectors. For our
work here, the derivatives of the real function of quaternion
variables, summarized in Table I are relevant. Furthermore, the
GHR derivatives allow us to find stationary points for scalar
real valued functions of a quaternion variable. It was shown in
[12], that the necessary condition for a solution in nonlinear
optimization to be optimal is

Dxf(x) = fo(x) = 07 (9)
where D is the left matrix derivative and f : H®*! — R.

III. PROPOSED MODEL AND RESULTS
A. Alternating Directional Method of Multipliers over H

We shall now extend the ADMM algorithm such that it
can be directly applied to the optimization problems over the
quaternion algebra. This method will be called Q-ADMM.
Here we will motivate and show how some of the most



TABLE I
MATRIX DERIVATIVES OF FUNCTIONS OF TYPE f(x)

f(x) Dx f Remark
x Ax xHAf%(Ax)H A e H™X", x € HPXL
XHA —%AH AeHan,ernXl
Ax A A e X", x € HP X!
A% —1A A e HY ", x € H™*!
be —%bH bEHnXl,XEHnX1

common optimization problems over the quaternion algebra
can be seen in this framework.

We assume as in the classical case, that the Q-ADMM
method over H solves problems of the form

f(x) +9(z)
st. Ax+Bz=c

min
(10)

with variables x € H"*!, z € H™X!, ¢ € HP*!, A € HP*"
and B € HP*™, where we assume that f : H"*! — R and
g : H™*! — R. In this article we restrict ourselves only to
the case when the functions f and g are convex.

By directly following the real case approach, we should
form the Lagrangian function. But this cannot be done directly,
because the constraint Ax + Bz = c is quaternion valued.
Since the quaternions are not an ordered field, we cannot
directly apply the same idea, but we can use the following
trick which makes the Lagrangian function real valued:

Lo(x,2,y) = f(x) + g(z) + 2Re (y" (Ax + Bz — ¢)) . (11)

The augmented Lagrangian function for the problem (10) can
then be defined by

Lo(x.2,y) = Lo(x,y) + S| Ax + Bz —cf3,  (12)
where p > 0 is the penalty parameter and y € HP*! is the
Lagrange multiplier. The ADMM algorithm consists of the
following steps

XMl = argmin £,(x, 2", y*), (13)
zF = argminﬁp(xk+l,z7}’k>v (14)
yEH = gk p(Axk+1 + BzFt c). (15)

Let us define the residual r = Ax+Bz—c. The Lagrangian
function contains the term 2Re(r), which we will first rewrite
by using (2). We have that 2Re (y"r) = y"r + rfy € R,
which is suitable for application of the GHR differentiation.

B. Examples and simulations

In the sequel, we show that the introduced method is
well-defined and that the introduced theory has a practical
applications. Thus, let us consider a few important examples
in order to show how we can solve them by using the Q-
ADMM method.

Example 1: The quaternion collaborative representation-
based classification (QCRC) model is intensively used for the
color image classification [10]. Given a test sample b and a
quaternion dictionary A, we want to obtain the quaternion rep-
resentation vector X. The corresponding minimization problem
is given by

% = argmin ||b — Ax||3 + \||x||3.
X

The solution to this problem in [10] is based on the existing
isomorphism between quaternion and real vectors. This ap-
proach leads to tedious calculations and to implementations
of huge real matrices. Now we will solve the same problem
in a more elegant way by the proposed ADMM method over
H. By introducing the variable z = b — Ax we obtain the
problem in the form (10)

min A3 + [z
sjt. Ax+z=Dhb.
The augmented Lagrangian is then given by
Ly(x,2,y) = Ax[3 + |lz]3 +y" (Ax +2 —b)
+ (xTAT 457 _ )y + g”Ax—i— z— b2
= Xxx+ 224+ y?(Ax +2z - D)
+ (x"A" + 2" — b))y
+§(Ax—|—z—b)H(Ax+z—b).

Now we can minimize each variable separately and conduct
the ADMM iterations as follows. In order to obtain the
updates for x, z and y we calculate the GHR derivatives
of the objective function by using the rules from Table I.
By equating those with zero because of (9), we obtain the
following ADMM updates:

xFTL = 2\ + pATTA)TAH (p(c — 27) — 2y"),
1
k+l _ k k
2" = ——(p(c — AX") — 2y"),
5 e~ Ax) — 25
yk+1 :yk-i-p(Q.Xk-i-Zk—b).

Note that these updates are similar to those in the classical real
case, which is not surprising given that this model represents
its generalization.

Let us now consider a numerical simulation with random
data where we directly work with the real-valued functions
of the quaternion variable. We generate a random dictionary
(overcomplete basis set) A € HO4*256 and different noisy
and clear signals b € H%*!, The obtained simulation results
demonstrate that the ADMM can quickly solve the considered
optimization problem and obtain satisfying results after only
a few dozen iterations. Detailed mathematical proofs of the
residual, objective and dual variable convergence results can
be obtained and will follow in our future work.

The regularization parameters A and p, can be optimized
by grid search but that is not our focus here. The value of the
objective function as well as the residual and dual-variable
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Fig. 1. The objective value, residual and dual variable convergence per

iteration k, for A = 10~2 and p = 3.

values for 30 iterations, for A = 1072 and p = 3 are plotted
in Fig. 1.

Example 2: Another important convex example that appears
in practice is the ¢;-norm minimization problem. The sparse
representation classification (SRC) in the quaternion setting
was used in [10] for color face recognition. The quaternion
Lasso (QLasso) model computes the quaternion sparse repre-
sentation vector by solving

% = argmin ||b — Ax||Z + \||x|1. (16)
We will now see that the advantage of the introduced Q-
ADMM over H is even clearer, since the real transformed
method [10] is given by

% = argmin|[lv(b) — x(A)r(x)[2 + AR(X)|l2.1,

x€Hnx1

a7

and leads to the group Lasso model with huge real matrices.
Problem (17) is then solved by using the classical real ADMM
method. We formulate the problem (16) in the form suitable
for the application of Q-ADMM by introducing a new variable
z. The problem then becomes

min ||b — Ax||% + Nz
X,z
s.t. x—z=0.

In this form the problem can be directly solved by using Q-
ADMM since it is represented in the form where the GHR
calculus can be applied and the iterations of the Q-ADMM
can easily be obtained. By using the differentiation operators
from [11] and [12] we are able to efficiently calculate the
derivatives of the || - ||;-function.

Based on the presented examples, we can observe that
the proposed Q-ADMM method can be used for solving the
optimization problems over the quaternion algebra by directly
working with the functions of a quaternion variable. This
makes it suitable for numerous optimization problems which
involve the quaternion valued parameters. This way we are
able to solve optimization problems which cannot simply be

rewritten as their equivalent real optimization problems. In the
future, we will further explore the potential of the Q-ADMM.

IV. CONCLUSION

In this paper, we extend the well-known ADMM algorithm
to the quaternion setting, which can then be applied to many
optimization problems over the quaternion algebra. The main
ideas behind the Q-ADMM model were presented. We also
stressed the importance of being able to solve those problems
directly without using the isomorphism with the algebra of
real numbers. The presented examples together with the ex-
perimental results show that the proposed algorithm together
with the GHR calculus, has potential to be used for different
quaternion minimization problems.
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