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Abstract – The Chirp-Z transformation is a versatile tool for 

frequency-time domain transformation. Though this versatility 

introduces a non-consistent scaling of the transformation products 

for which the standard implementation of the transformation does 

not account for. In this contribution we present a scaling factor 

that can be applied to the signal to achieve a consistent scaling for 

different time and frequency vectors. We analyze the behavior of 

the Chirp-Z transformation in case of an interpolation of the time 

domain data and compare the results to the Discrete Fourier 

Transformation. Further, we discuss why this approach is of 

practical use for calculating time domain signals from data 

captured with a vector network analyzer. 
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I. INTRODUCTION 

Chirp-Z Transformation (CZT) is a generalized form of the 

Discrete Fourier Transformation (DFT) and can be used for 

efficient and versatile frequency-time-domain conversions. In 

contrast to the DFT, target frequency and time vectors can be 

supplied for the transformation. This allows efficient 

conversion of sparse signals and interpolation in a single 

transformation step [1] [2] [3]. 

Another big advantage of the Inverse Chirp-Z 

Transformation (ICZT) is that the input frequency vector does 

not need to start at DC (0 Hz) to result in a real valued time 

domain signal, assuming a symmetric spectrum. This is of 

practical importance as vector network analyzers (VNAs) are 

usually not able to perform measurements down to DC. If one 

wants to apply the Inverse Discrete Fourier Transformation 

(IDFT) to measurement data of a VNA usually the spectrum is 

extrapolated to DC. For this the frequency vector generated by 

the VNA needs to be chosen in a way to result in a sample 

exactly at DC, if it is extended with equally spaced samples. 

Interpolation in the frequency domain can help with data not 

meeting this requirement. 

Another method often seen is to simply neglect the imaginary 

part of the time domain signal. In the authors’ opinion this is 

not a proper way to handle this issue, as information of the 

signal is intentionally thrown away, which makes a conversion 

back to the original spectrum impossible, although the error 

produced by this method is small if the lowest frequency sample 

is close to DC. The ICZT does not suffer from this problem. But 

with the possibility to supply target frequency and time vectors 

 
 

comes a problem which is often not mentioned in literature. If 

an ICZT of the same spectrum is performed using different 

target time vectors the time domain signal will be scaled 

differently.  

To understand why this happens please think about the 

following example. For this example we use an implementation 

of the CZT which conserves the energy of the signal on both 

sides of the transformation. For the transformation we use two 

time vectors with same start and end time, but different 

sampling frequencies. In this example the magnitude of the time 

domain signal with lower sample rate will be higher as the same 

energy is distributed over less samples. In most cases this is not 

what we want to achieve. The situation becomes even more 

complicated if you consider that also the start and end times of 

the vectors could be different, and the input spectra might also 

use different frequency vectors. To deal with this problem we 

present an implementation of the ICZT which provides an 

additional scaling factor as output of the transformation in 

Section II. By multiplying the scaling factor with the time 

domain signal one can correct for the above mentioned effect, 

while the transformation itself uses the known implementations 

from [1] [2] [3]. At this point it needs to be mentioned that [4] 

showed, that the combination of CZT and ICZT produces 

numerical errors depending on the provided parameters for the 

transformation. If one is aware of this, the resulting error can be 

kept low by choosing appropriate parameters for the 

transformation, allowing practical use with only little impact 

due to numerical errors of the transformation. 

In Section III we compare the behavior of the DFT and CZT 

with scaling factor using a test signal which is sparse in time. 

We also show how the ICZT can be employed to perform an 

interpolation of the time domain signal directly in the 

transformation. In Section IV we shortly conclude our findings. 

II. IMPLEMENTATION OF CZT AND ICZT 

In this section we present the equations used to perform the 

CZT and ICZT with the mentioned scaling factor. To simplify 

the equations of the CZT and ICZT we assume that the 

transformation is performed along the unit circle in the Z-plane, 

as it is the case for the DFT. For the purpose of transforming 

VNA measurement data into time domain this is a valid 

assumption and has the benefit that for correctly chosen time 

and frequency vectors the CZT and DFT produce the same 

result. Information on this can be found in [1]. The equations 

(1) and (2) show that the time and frequency vectors used for 

the transformation do not need to start at zero, while (3) shows 

the CZT and (4) the ICZT along the unit circle. 

𝑡 = 𝑡[𝑛] = 𝑛𝑇 + 𝑇0     𝑛 = 0 … 𝑁 − 1 (1) 

𝑓 = 𝑓[𝑘] = 𝑘Δ𝑓 + 𝑓0     𝑘 = 0 … 𝑀 − 1 (2) 
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𝑋[𝑘] = ∑ 𝑥[𝑛]

𝑁−1

𝑛=0

∙ 𝑒−𝑗 2𝜋 𝑡[𝑛] 𝑓[𝑘] (3) 

𝑥[𝑛] =  
1

√𝑁𝑀
∑ 𝑋∗[𝑘] ∙ 𝑒𝑗 2𝜋 𝑡[𝑛] 𝑓[𝑘]

𝑀−1

𝑘=0

 (4) 

The implementation of the CZT in (5) is done according to 

(3). In addition to (4) our Matlab® implementation of the ICZT 

also returns a scaling factor 𝐴 as shown in (6) and applies a 

normalization according to the used time window as shown in 

(7). The normalization factor 𝐴𝑡 depends on the duration of the 

time vector 𝑡 and the alias free time 𝑇𝑎𝑙𝑖𝑎𝑠. Like in the frequency 

domain a signal will also repeat in the time domain if the time 

vector exceeds 𝑇𝑎𝑙𝑖𝑎𝑠. The magnitude scaling factor 𝐴 is 

calculated in (10) using the length of the time vector N, the 

length of the frequency vector M, the time vector dependent 

scaling factor 𝐴𝑡 and the frequency vector dependent scaling 

factor 𝐴𝑓. 

𝑋 = 𝑚𝑦𝐶𝑍𝑇 (𝑡, 𝑥, 𝑓) (5) 

[𝑥′, 𝐴] = 𝑚𝑦𝐼𝐶𝑍𝑇 (𝑓, 𝑋, 𝑡) (6) 

𝑥′[𝑛] = 𝐴𝑡 ∙
1

√𝑁𝑀
∑ 𝑋∗[𝑘] ∙ 𝑒𝑗 2𝜋 𝑡[𝑛] 𝑓[𝑘]

𝑀−1

𝑘=0

 (7) 

𝐴𝑡 = √
𝑡[𝑁 − 1] − 𝑡[0]

𝑇𝑎𝑙𝑖𝑎𝑠

 (8) 

𝑇𝑎𝑙𝑖𝑎𝑠 =
1

Δ𝑓

=
1

𝑓[1] − 𝑓[2]
 (9) 

𝐴 = √𝑁 𝑀⁄ ∙ 𝐴𝑡
−1 ∙ 𝐴𝑓 (10) 

𝐴𝑓 =
𝑓[𝑀 − 1] − 𝑓[0]

𝑓[𝑀 − 1]
 (11) 

The following code lines show the Matlab® implementation 

of the function myICZT() and myCZT(). 
function [X] = myCZT(t, x, f) 

T = mean(t(2:end) - t(1:end-1)); 

Fs = 1 / T; 
if max(abs(f)) > Fs/2 

    warning('Specified frequency vector exceeds alias free range.') 

end 
f = f(:)'; 

x = x(:); 

t = t(:); 

%% Calculate transformation 

x_matrix = repmat(x, 1, length(f)); 

X = sum( x_matrix .* exp(-1i * 2*pi * t * f ) ,1); 
X = X(:); 

end 
 
function [x, A] = myICZT(f, X, t) 

f = f(:); 

f_low = min(abs(f)); 
f_high = max(abs(f)); 

X = X(:); 

t = t(:)'; 
f = [-f(end:-1:1); f]; 

X_two_sided = [conj(X(end:-1:1)); X];      

% Generate time vector 
T_alias = 1 / abs(f(2) - f(1)); 

if nargin < 3 || length(t) <= 1 

    Td = 1/(max(abs(f))*2); 
    t = 0:Td:T_alias; 

end 

% Check time vector 
if t(end) > T_alias + eps 

    warning('Provided time vector exceeds alias free time.') 

end 
A_t = sqrt((t(end)-t(1)) / T_alias) ; 

% Calculate transformation 

X_matrix = repmat(X_two_sided, 1, length(t)); 
x = conj(1/sqrt(length(t)*length(f)) * … 

sum( X_matrix .* exp(1i * 2*pi * f * t) ,1)); 

% Correct power error due to time window 
x = x * A_t; 

 % magnitude scaling factor 

A_f = (f_high - f_low) / f_high 
A = sqrt(length(t)/length(f)) / A_t * A_f; 

end 

III. COMPARISON OF RESULTS FOR DFT AND CZT 

In this section we show results obtained by using the 

implementations of the CZT and ICZT in (6) and (5) and 

compare them to the DFT and IDFT. For this we used the test 

signals shown in Fig. 1, which are generated by multiplying a 

1 ns rectangular window with a 10 GHz carrier as shown in (12) 

to (14). The sampled signal 𝑠[𝑛] uses a sampling frequency (𝐹𝑠) 

of 28 GHz. 

 
Fig. 1. Input signals used for analysis of CZT and ICZT. 

𝑠𝑐  (𝑡) = 𝑤(𝑡) ∙ 𝑐𝑜𝑠(2𝜋 𝑡 𝑓𝑐)  (12) 

𝑤(𝑡) = {
1 29.5 𝑛𝑠 < 𝑡 < 30.5 𝑛𝑠
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (13) 

𝑠 = 𝑠[𝑛] =  𝑠𝑐(𝑛𝑇) = 𝑠𝑐(𝑛 1 𝐹𝑠⁄ ) (14) 

First we needed to calculate the complex spectrum of the 

signals in order to test the ICZT. For this we used the built in 

Fast Fourier Transformation (FFT) of Matlab® (15) and our 

implementation of the CZT (16). If the target frequency vector 

𝑓 is chosen to be identical to the one of the FFT, the CZT and 

FFT yield identical results as shown in Fig. 2. Using the 

calculated spectrum we can now apply the ICZT to get back the 

time domain signal. If the same time vector is used the ICZT 

yields the original signal 𝑠 as shown in Fig. 3 and (17), even 

without the magnitude scaling factor 𝐴, which is equal to one 

for this case. 

For (18) we used a different time vector 𝑡′′, which uses the 



  

same number of samples but starts at 29.2 ns and ends at 

30.8 ns. Because we use the same number of samples for a 

shorter period of time the ICZT now inherently performs an 

interpolation of the time domain signal which is visualized in 

Fig. 3. As transformation and interpolation is performed in the 

same step this is a very efficient implementation, and it can be 

reversed using the corresponding inverse function with the 

same time and frequency vectors. Of course only signal 

components which were not thrown away due to the selected 

time vector can be restored. In our example the time 𝑡′′ vector 

only removed zero samples, leading to no loss of information.  

To achieve the correct magnitude for the interpolated signal 

𝑠′′, the signal in Fig. 3 was multiplied by 𝐴′′. The matching 

frequency domain representation was calculated in (19). Please 

note that for this 𝑠′′ was divided by 𝐴′′ before the 

transformation. As the CZT is a linear transformation the 

scaling could be done at a different stage, but we chose to apply 

it to the time domain signal before the transformation. The 

result of (19) is plotted in Fig. 2. You can observe that due to 

the interpolation the sampling frequency of the signal is much 

higher than for the original signal, but because the number of 

points is the same, the frequency spacing between points in the 

spectrum increased. By using this interpolation, the signal 𝑠′′ in 

Fig. 3 looks very similar to the analog signal 𝑠(𝑡). Only at the 

edges of the rectangular window the signal could not follow the 

quick change because of the missing signal components at 

higher frequencies.   

𝑆𝐹𝐹𝑇 = 𝐹𝐹𝑇{𝑠} (15) 

𝑆𝐶𝑍𝑇 = 𝑚𝑦𝐶𝑍𝑇{𝑡, 𝑠, 𝑓} (16) 

𝑠′ = 𝑚𝑦𝐼𝐶𝑍𝑇 (𝑓, 𝑆𝐶𝑍𝑇 , 𝑡) = 𝑠 (17) 

[𝑠′′, 𝐴′′] = 𝑚𝑦𝐼𝐶𝑍𝑇(𝑓, 𝑆𝐶𝑍𝑇 , 𝑡′′)  (18) 

𝑆𝐶𝑍𝑇
′′ = 𝑚𝑦𝐶𝑍𝑇 (𝑡′′,

𝑠′′

𝐴′′
, 𝑓′′) (19) 

 
Fig. 2 Frequency domain representation of the sampled test signal 

using Fast Fourier Transformation (blue line), CZT (dashed red line) 

and CZT of the time windowed signal, which was created using the 

ICZT on the FFT result of the sampled signal. 

 
Fig. 3 Time domain representation of the analog reference signal 

(red), a signal calculated using ICZT with the original time vector t 
(blue) and a signal calculated using a truncated time vector with 

higher sample rate t′′ (cyan). 

Until now we only showed transformations for spectra 

starting at DC, which could as well be transformed using the 

IDFT. In Fig. 4 and Fig. 5 we show the impact of applying the 

ICZT to a spectrum ranging from 3 GHz to 14 GHz. The 

calculation of the blue spectrum in Fig. 4 is shown in (20) and 

(21), and simply is the truncated spectrum of the original 

sampled signal. By applying the ICZT in (22) a real valued time 

domain signal can be calculated from this spectrum, which is 

shown as cyan colored line in Fig. 5. Using the same time and 

frequency vectors as in (19) the frequency domain 

representation of this signal (𝑆𝑁𝑜𝐷𝐶
′ ), which now contains 

frequency components down to DC, is calculated in (23) and is 

also presented in the spectrum plot. What happens if a 

frequency vector extending over the alias free range is supplied 

for the CZT is presented in (24) and Fig. 4. For this the original 

signal 𝑠 was transformed into frequency domain using the 

frequency vector of the interpolated signal which causes 

aliasing. The same occurs for the ICZT if a time vector 

exceeding the alias free time is supplied for the transformation. 

A practical implementation of the CZT and ICZT should 

provide you with a warning in such a case. 

𝑓𝑁𝑜𝐷𝐶 = 𝑓|3 𝐺𝐻𝑧<𝑓<14 𝐺𝐻𝑧 (20) 

𝑆𝑁𝑜𝐷𝐶 = 𝑆𝐹𝐹𝑇|𝑓𝑁𝑜𝐷𝐶
 (21) 

[𝑠𝑁𝑜𝐷𝐶 , 𝐴𝑁𝑜𝐷𝐶] = 𝑚𝑦𝐼𝐶𝑍𝑇 (𝑓𝑁𝑜𝐷𝐶 , 𝑆𝑁𝑜𝐷𝐶 , 𝑡′′) (22) 

𝑆𝑁𝑜𝐷𝐶
′ = 𝑚𝑦𝐶𝑍𝑇 (𝑡′′,

𝑠𝑁𝑜𝐷𝐶

𝐴𝑁𝑜𝐷𝐶

, 𝑓′′) (23) 

𝑆𝑁𝑜𝐷𝐶
′′ = 𝑚𝑦𝐶𝑍𝑇 (𝑡, 𝑠, 𝑓′′) (24) 



  

 
Fig. 4 Plot of a spectrum with missing lower frequency 

components (blue), the spectrum of a signal after the missing 

components where extrapolated using ICZT (cyan) and spectrum of 

the original signal s  with extrapolation of higher frequency 

components above the alias free range using CZT (dashed magenta). 

 
Fig. 5 Time domain signal calculated from a spectrum with 

missing lower frequency components using ICZT (cyan) and 

reference signal (red). 

IV. CONCLUSION 

In this contribution we present a method for normalization of 

the time domain signals generated by the ICZT based on the 

provided frequency and time vectors. Without this 

normalization a transformation of the same signal with different 

target time vectors would lead to differently scaled time signals. 

By multiplying the presented normalization factor with the time 

domain signal a correct scaling can be achieved. For this 

method it is mandatory that the provided time and frequency 

vectors contain equally spaced samples, which is not a formal 

requirement for the CZT or ICZT itself. For example, two 

spectra with different frequency ranges and frequency spacing 

could be combined using ICZT. In such a case the mentioned 

normalization factor will not be correct and should be omitted. 

At this point we would also like to mention that if the time and 

frequency vectors do not change, the scaling factor will also not 

change, allowing a relative comparison of the transformation 

results without applying any scaling factors. 
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