

Consistent Scaling for the Inverse

Chirp-Z Transformation
David Veit1, Michael Vorderderfler1, Michael Gadringer1 and Erich Leitgeb1



Abstract – The Chirp-Z transformation is a versatile tool for

frequency-time domain transformation. Though this versatility

introduces a non-consistent scaling of the transformation products

for which the standard implementation of the transformation does

not account for. In this contribution we present a scaling factor

that can be applied to the signal to achieve a consistent scaling for

different time and frequency vectors. We analyze the behavior of

the Chirp-Z transformation in case of an interpolation of the time

domain data and compare the results to the Discrete Fourier

Transformation. Further, we discuss why this approach is of

practical use for calculating time domain signals from data

captured with a vector network analyzer.

Keywords – frequency-domain analysis, time-domain analysis,

time-frequency transformation, chirp-Z transformation, inverse

chirp-Z transformation

I. INTRODUCTION

Chirp-Z Transformation (CZT) is a generalized form of the

Discrete Fourier Transformation (DFT) and can be used for

efficient and versatile frequency-time-domain conversions. In

contrast to the DFT, target frequency and time vectors can be

supplied for the transformation. This allows efficient

conversion of sparse signals and interpolation in a single

transformation step [1] [2] [3].

Another big advantage of the Inverse Chirp-Z

Transformation (ICZT) is that the input frequency vector does

not need to start at DC (0 Hz) to result in a real valued time

domain signal, assuming a symmetric spectrum. This is of

practical importance as vector network analyzers (VNAs) are

usually not able to perform measurements down to DC. If one

wants to apply the Inverse Discrete Fourier Transformation

(IDFT) to measurement data of a VNA usually the spectrum is

extrapolated to DC. For this the frequency vector generated by

the VNA needs to be chosen in a way to result in a sample

exactly at DC, if it is extended with equally spaced samples.

Interpolation in the frequency domain can help with data not

meeting this requirement.

Another method often seen is to simply neglect the imaginary

part of the time domain signal. In the authors’ opinion this is

not a proper way to handle this issue, as information of the

signal is intentionally thrown away, which makes a conversion

back to the original spectrum impossible, although the error

produced by this method is small if the lowest frequency sample

is close to DC. The ICZT does not suffer from this problem. But

with the possibility to supply target frequency and time vectors

comes a problem which is often not mentioned in literature. If

an ICZT of the same spectrum is performed using different

target time vectors the time domain signal will be scaled

differently.

To understand why this happens please think about the

following example. For this example we use an implementation

of the CZT which conserves the energy of the signal on both

sides of the transformation. For the transformation we use two

time vectors with same start and end time, but different

sampling frequencies. In this example the magnitude of the time

domain signal with lower sample rate will be higher as the same

energy is distributed over less samples. In most cases this is not

what we want to achieve. The situation becomes even more

complicated if you consider that also the start and end times of

the vectors could be different, and the input spectra might also

use different frequency vectors. To deal with this problem we

present an implementation of the ICZT which provides an

additional scaling factor as output of the transformation in

Section II. By multiplying the scaling factor with the time

domain signal one can correct for the above mentioned effect,

while the transformation itself uses the known implementations

from [1] [2] [3]. At this point it needs to be mentioned that [4]

showed, that the combination of CZT and ICZT produces

numerical errors depending on the provided parameters for the

transformation. If one is aware of this, the resulting error can be

kept low by choosing appropriate parameters for the

transformation, allowing practical use with only little impact

due to numerical errors of the transformation.

In Section III we compare the behavior of the DFT and CZT

with scaling factor using a test signal which is sparse in time.

We also show how the ICZT can be employed to perform an

interpolation of the time domain signal directly in the

transformation. In Section IV we shortly conclude our findings.

II. IMPLEMENTATION OF CZT AND ICZT

In this section we present the equations used to perform the

CZT and ICZT with the mentioned scaling factor. To simplify

the equations of the CZT and ICZT we assume that the

transformation is performed along the unit circle in the Z-plane,

as it is the case for the DFT. For the purpose of transforming

VNA measurement data into time domain this is a valid

assumption and has the benefit that for correctly chosen time

and frequency vectors the CZT and DFT produce the same

result. Information on this can be found in [1]. The equations

(1) and (2) show that the time and frequency vectors used for

the transformation do not need to start at zero, while (3) shows

the CZT and (4) the ICZT along the unit circle.

𝑡 = 𝑡[𝑛] = 𝑛𝑇 + 𝑇0 𝑛 = 0 … 𝑁 − 1 (1)

𝑓 = 𝑓[𝑘] = 𝑘Δ𝑓 + 𝑓0 𝑘 = 0 … 𝑀 − 1 (2)

The authors1 are with the Institute of Microwave and Photonic

Engineering at Graz University of Technology, 8010 Graz, Austria.

𝑋[𝑘] = ∑ 𝑥[𝑛]

𝑁−1

𝑛=0

∙ 𝑒−𝑗 2𝜋 𝑡[𝑛] 𝑓[𝑘] (3)

𝑥[𝑛] =
1

√𝑁𝑀
∑ 𝑋∗[𝑘] ∙ 𝑒𝑗 2𝜋 𝑡[𝑛] 𝑓[𝑘]

𝑀−1

𝑘=0

 (4)

The implementation of the CZT in (5) is done according to

(3). In addition to (4) our Matlab® implementation of the ICZT

also returns a scaling factor 𝐴 as shown in (6) and applies a

normalization according to the used time window as shown in

(7). The normalization factor 𝐴𝑡 depends on the duration of the

time vector 𝑡 and the alias free time 𝑇𝑎𝑙𝑖𝑎𝑠. Like in the frequency

domain a signal will also repeat in the time domain if the time

vector exceeds 𝑇𝑎𝑙𝑖𝑎𝑠. The magnitude scaling factor 𝐴 is

calculated in (10) using the length of the time vector N, the

length of the frequency vector M, the time vector dependent

scaling factor 𝐴𝑡 and the frequency vector dependent scaling

factor 𝐴𝑓.

𝑋 = 𝑚𝑦𝐶𝑍𝑇 (𝑡, 𝑥, 𝑓) (5)

[𝑥′, 𝐴] = 𝑚𝑦𝐼𝐶𝑍𝑇 (𝑓, 𝑋, 𝑡) (6)

𝑥′[𝑛] = 𝐴𝑡 ∙
1

√𝑁𝑀
∑ 𝑋∗[𝑘] ∙ 𝑒𝑗 2𝜋 𝑡[𝑛] 𝑓[𝑘]

𝑀−1

𝑘=0

 (7)

𝐴𝑡 = √
𝑡[𝑁 − 1] − 𝑡[0]

𝑇𝑎𝑙𝑖𝑎𝑠

 (8)

𝑇𝑎𝑙𝑖𝑎𝑠 =
1

Δ𝑓

=
1

𝑓[1] − 𝑓[2]
 (9)

𝐴 = √𝑁 𝑀⁄ ∙ 𝐴𝑡
−1 ∙ 𝐴𝑓 (10)

𝐴𝑓 =
𝑓[𝑀 − 1] − 𝑓[0]

𝑓[𝑀 − 1]
 (11)

The following code lines show the Matlab® implementation

of the function myICZT() and myCZT().
function [X] = myCZT(t, x, f)

T = mean(t(2:end) - t(1:end-1));

Fs = 1 / T;
if max(abs(f)) > Fs/2

 warning('Specified frequency vector exceeds alias free range.')

end
f = f(:)';

x = x(:);

t = t(:);

%% Calculate transformation

x_matrix = repmat(x, 1, length(f));

X = sum(x_matrix .* exp(-1i * 2*pi * t * f) ,1);
X = X(:);

end

function [x, A] = myICZT(f, X, t)

f = f(:);

f_low = min(abs(f));
f_high = max(abs(f));

X = X(:);

t = t(:)';
f = [-f(end:-1:1); f];

X_two_sided = [conj(X(end:-1:1)); X];

% Generate time vector
T_alias = 1 / abs(f(2) - f(1));

if nargin < 3 || length(t) <= 1

 Td = 1/(max(abs(f))*2);
 t = 0:Td:T_alias;

end

% Check time vector
if t(end) > T_alias + eps

 warning('Provided time vector exceeds alias free time.')

end
A_t = sqrt((t(end)-t(1)) / T_alias) ;

% Calculate transformation

X_matrix = repmat(X_two_sided, 1, length(t));
x = conj(1/sqrt(length(t)*length(f)) * …

sum(X_matrix .* exp(1i * 2*pi * f * t) ,1));

% Correct power error due to time window
x = x * A_t;

 % magnitude scaling factor

A_f = (f_high - f_low) / f_high
A = sqrt(length(t)/length(f)) / A_t * A_f;

end

III. COMPARISON OF RESULTS FOR DFT AND CZT

In this section we show results obtained by using the

implementations of the CZT and ICZT in (6) and (5) and

compare them to the DFT and IDFT. For this we used the test

signals shown in Fig. 1, which are generated by multiplying a

1 ns rectangular window with a 10 GHz carrier as shown in (12)

to (14). The sampled signal 𝑠[𝑛] uses a sampling frequency (𝐹𝑠)

of 28 GHz.

Fig. 1. Input signals used for analysis of CZT and ICZT.

𝑠𝑐 (𝑡) = 𝑤(𝑡) ∙ 𝑐𝑜𝑠(2𝜋 𝑡 𝑓𝑐) (12)

𝑤(𝑡) = {
1 29.5 𝑛𝑠 < 𝑡 < 30.5 𝑛𝑠
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (13)

𝑠 = 𝑠[𝑛] = 𝑠𝑐(𝑛𝑇) = 𝑠𝑐(𝑛 1 𝐹𝑠⁄) (14)

First we needed to calculate the complex spectrum of the

signals in order to test the ICZT. For this we used the built in

Fast Fourier Transformation (FFT) of Matlab® (15) and our

implementation of the CZT (16). If the target frequency vector

𝑓 is chosen to be identical to the one of the FFT, the CZT and

FFT yield identical results as shown in Fig. 2. Using the

calculated spectrum we can now apply the ICZT to get back the

time domain signal. If the same time vector is used the ICZT

yields the original signal 𝑠 as shown in Fig. 3 and (17), even

without the magnitude scaling factor 𝐴, which is equal to one

for this case.

For (18) we used a different time vector 𝑡′′, which uses the

same number of samples but starts at 29.2 ns and ends at

30.8 ns. Because we use the same number of samples for a

shorter period of time the ICZT now inherently performs an

interpolation of the time domain signal which is visualized in

Fig. 3. As transformation and interpolation is performed in the

same step this is a very efficient implementation, and it can be

reversed using the corresponding inverse function with the

same time and frequency vectors. Of course only signal

components which were not thrown away due to the selected

time vector can be restored. In our example the time 𝑡′′ vector

only removed zero samples, leading to no loss of information.

To achieve the correct magnitude for the interpolated signal

𝑠′′, the signal in Fig. 3 was multiplied by 𝐴′′. The matching

frequency domain representation was calculated in (19). Please

note that for this 𝑠′′ was divided by 𝐴′′ before the

transformation. As the CZT is a linear transformation the

scaling could be done at a different stage, but we chose to apply

it to the time domain signal before the transformation. The

result of (19) is plotted in Fig. 2. You can observe that due to

the interpolation the sampling frequency of the signal is much

higher than for the original signal, but because the number of

points is the same, the frequency spacing between points in the

spectrum increased. By using this interpolation, the signal 𝑠′′ in

Fig. 3 looks very similar to the analog signal 𝑠(𝑡). Only at the

edges of the rectangular window the signal could not follow the

quick change because of the missing signal components at

higher frequencies.

𝑆𝐹𝐹𝑇 = 𝐹𝐹𝑇{𝑠} (15)

𝑆𝐶𝑍𝑇 = 𝑚𝑦𝐶𝑍𝑇{𝑡, 𝑠, 𝑓} (16)

𝑠′ = 𝑚𝑦𝐼𝐶𝑍𝑇 (𝑓, 𝑆𝐶𝑍𝑇 , 𝑡) = 𝑠 (17)

[𝑠′′, 𝐴′′] = 𝑚𝑦𝐼𝐶𝑍𝑇(𝑓, 𝑆𝐶𝑍𝑇 , 𝑡′′) (18)

𝑆𝐶𝑍𝑇
′′ = 𝑚𝑦𝐶𝑍𝑇 (𝑡′′,

𝑠′′

𝐴′′
, 𝑓′′) (19)

Fig. 2 Frequency domain representation of the sampled test signal

using Fast Fourier Transformation (blue line), CZT (dashed red line)

and CZT of the time windowed signal, which was created using the

ICZT on the FFT result of the sampled signal.

Fig. 3 Time domain representation of the analog reference signal

(red), a signal calculated using ICZT with the original time vector t
(blue) and a signal calculated using a truncated time vector with

higher sample rate t′′ (cyan).

Until now we only showed transformations for spectra

starting at DC, which could as well be transformed using the

IDFT. In Fig. 4 and Fig. 5 we show the impact of applying the

ICZT to a spectrum ranging from 3 GHz to 14 GHz. The

calculation of the blue spectrum in Fig. 4 is shown in (20) and

(21), and simply is the truncated spectrum of the original

sampled signal. By applying the ICZT in (22) a real valued time

domain signal can be calculated from this spectrum, which is

shown as cyan colored line in Fig. 5. Using the same time and

frequency vectors as in (19) the frequency domain

representation of this signal (𝑆𝑁𝑜𝐷𝐶
′), which now contains

frequency components down to DC, is calculated in (23) and is

also presented in the spectrum plot. What happens if a

frequency vector extending over the alias free range is supplied

for the CZT is presented in (24) and Fig. 4. For this the original

signal 𝑠 was transformed into frequency domain using the

frequency vector of the interpolated signal which causes

aliasing. The same occurs for the ICZT if a time vector

exceeding the alias free time is supplied for the transformation.

A practical implementation of the CZT and ICZT should

provide you with a warning in such a case.

𝑓𝑁𝑜𝐷𝐶 = 𝑓|3 𝐺𝐻𝑧<𝑓<14 𝐺𝐻𝑧 (20)

𝑆𝑁𝑜𝐷𝐶 = 𝑆𝐹𝐹𝑇|𝑓𝑁𝑜𝐷𝐶
 (21)

[𝑠𝑁𝑜𝐷𝐶 , 𝐴𝑁𝑜𝐷𝐶] = 𝑚𝑦𝐼𝐶𝑍𝑇 (𝑓𝑁𝑜𝐷𝐶 , 𝑆𝑁𝑜𝐷𝐶 , 𝑡′′) (22)

𝑆𝑁𝑜𝐷𝐶
′ = 𝑚𝑦𝐶𝑍𝑇 (𝑡′′,

𝑠𝑁𝑜𝐷𝐶

𝐴𝑁𝑜𝐷𝐶

, 𝑓′′) (23)

𝑆𝑁𝑜𝐷𝐶
′′ = 𝑚𝑦𝐶𝑍𝑇 (𝑡, 𝑠, 𝑓′′) (24)

Fig. 4 Plot of a spectrum with missing lower frequency

components (blue), the spectrum of a signal after the missing

components where extrapolated using ICZT (cyan) and spectrum of

the original signal s with extrapolation of higher frequency

components above the alias free range using CZT (dashed magenta).

Fig. 5 Time domain signal calculated from a spectrum with

missing lower frequency components using ICZT (cyan) and

reference signal (red).

IV. CONCLUSION

In this contribution we present a method for normalization of

the time domain signals generated by the ICZT based on the

provided frequency and time vectors. Without this

normalization a transformation of the same signal with different

target time vectors would lead to differently scaled time signals.

By multiplying the presented normalization factor with the time

domain signal a correct scaling can be achieved. For this

method it is mandatory that the provided time and frequency

vectors contain equally spaced samples, which is not a formal

requirement for the CZT or ICZT itself. For example, two

spectra with different frequency ranges and frequency spacing

could be combined using ICZT. In such a case the mentioned

normalization factor will not be correct and should be omitted.

At this point we would also like to mention that if the time and

frequency vectors do not change, the scaling factor will also not

change, allowing a relative comparison of the transformation

results without applying any scaling factors.

V. ACKNOWLEDGEMENT

This work was funded by the Austrian Research Promotion

Agency (FFG) under the research project UB-Smart

(No.: 859475).

REFERENCES

[1] D. Frickey, "Using the Inverse Chirp-Z Transform for

Time-Domain Analysis of Simulated Radar Signals," in

International Conference on Signal Processing Applications

and Technology (ICSPAT 94), 1994.

[2] L. R. Rabiner, R. W. Schafer and C. M. Rader, "The chirp

z-transform algorithm and its application," The Bell System

Technical Journal, vol. 48, no. 5, pp. 1249-1292, 1969.

[3] W. Yiding, W. Yirong and H. Jun, "Application of inverse

chirp-z transform in wideband radar," in International

Geoscience and Remote Sensing Symposium (IGARSS 2001),

Sydney, Australia, 2001.

[4] V. Sukhoy and A. Stoytchev, "Numerical error analysis of

the ICZT algorithm for chirp contours on the unit circle,"

Nature, vol. Article Number: 4852 (2020), 2020.

