
Mobile technologies and programming in terms of the

continuity principle in school and university education
Eleonora Brtka

1
, Igor Vecštejn

2
, Vladimir Brtka

3
, Vesna Makitan

4
 and Ivana Berković

5

Abstract – The paper is dedicated to the issues of teaching

mobile application development and, as a consequence, training

of highly qualified mobile developers. Nowadays, training

professional mobile developers is a crucial task all over the

world. The researchers emphasize the complexity of mobile

application development associated with its multidisciplinary, the

mobile device hardware limitations, the necessity of object-

oriented programming in the mobile development.

Keywords – Mobile application development, object-oriented

programming, educational technology, modern teaching.

I. INTRODUCTION

Mobile computing is one of the rapidly evolving fields of

computer science [1]. Teaching and learning the development

of mobile applications is one of the recent problems [2]. The

demand for competent mobile application developers globally

is high. Many researchers agree that training mobile

application developers at the secondary level is impossible for

several reasons [3]. First, mobile application programming

was a multidisciplinary field that encompassed knowledge of

areas such as software development, human-computer

interaction, web programming, IT security, network

interaction, artificial intelligence, machine learning. Second,

the professional development of mobile applications requires

knowledge and skills of object-oriented programming [3, 4].

The insufficient level of programming background makes

necessary to bridging gap in students’ knowledge of the object

oriented programming basic concepts within the initial

undergraduate courses. It also leads to teaching about the

development of mobile applications in higher education

courses. As a result, students are limited in time to

professionally master the development of mobile applications.

Due to the above circumstances, it is necessary to overhaul

school and university curricula in terms of the principle of

continuity and filling gaps in programming and to quickly

adapt students to modern learning content in the development

of mobile applications.

In this paper, we dealt with the question: How to bridge the

gap in the level of high school graduates’ knowledge on

programming in order to prepare successful mobile

application developers at the university? To answer such a

question, we must analyze similar papers that dealt with the

problem of the continuity of the knowledge gap of high school

students, quickly adapted to university disciplines and

effectively developed the professional competencies of future

professionals.

II. RELATED WORK

Many studies [5, 6, 7, 8] show the necessity, possibility and

popularity of studying programming in high school. The

teaching of programming in high school is justified, because

in this age, according to Piaget, there is a transition between

phases from concrete thought operations to abstract logical

thinking [8].

Therefore, learning programming can begin at this age, but

with the right content, in order to gradually learn from simple

to complex. At the same time, when developing curricula, it

should be taken into account that in the teaching of computer

science in school, the main goal should be teaching the basic

concepts transmitted by the language, and not teaching the

language itself [7]. At the same time, new strategies are

needed in teaching programming, because learning computer

programming is not easy, even for students who have enrolled

in computer science disciplines. Students who have a basic

knowledge of programming find advanced programming

courses difficult, because these courses require higher-order

thinking skills [9]. In such a case, it is considered interesting

to approach the teaching of programming based on the use of

software for visualization of algorithms such as Scratch,

Alice, App Inventor. These platforms facilitate programming

learning, making the programming process engaging and

visualizing enabling the development of knowledge about

basic programming principles, basic concepts of object-

oriented programming, and basic principles of mobile

application programming [9]. After learning these platforms,

students can safely move not only to more complex

programming languages but also to complex processes of

mobile application development [10].

A visual programming environment, such as Scratch, is

designed to teach students ages 8 and up. Scratch motivates

learning of programming and enables mastering of basic

principles of programming [10, 11]. Scratch enables the

creation of animated and interactive applications without

writing program code, revealing the creativity of school

children and highly motivating them to learn programming

1Eleonora Brtka is with University of Novi Sad, Technical faculty

“Mihajlo Pupin”, Đure Đakovića bb, 23000 Zrenjanin, Serbia, E-

mail: eleonorabrtka@gmail.com
2Igor Vecštejn is with University of Novi Sad, Technical faculty

“Mihajlo Pupin”, Đure Đakovića bb, 23000 Zrenjanin, Serbia, E-

mail: igor.vecstejn@gmail.com
3Vladimir Brtka is with University of Novi Sad, Technical faculty

“Mihajlo Pupin”, Đure Đakovića bb, 23000 Zrenjanin, Serbia, E-

mail: vbrtka@tfzr.uns.ac.rs
4Vesna Makitan is with University of Novi Sad, Technical faculty

“Mihajlo Pupin”, Đure Đakovića bb, 23000 Zrenjanin, Serbia, E-

mail: vesna@tfzr.uns.ac.rs
5Ivana Berković is with University of Novi Sad, Technical faculty

“Mihajlo Pupin”, Đure Đakovića bb, 23000 Zrenjanin, Serbia, E-

mail: ivana.berkovic62@gmail.com

[11]. The results of the research indicate the possibility and

need to use this environment in school for the development of

programming skills, algorithmic and logical thinking [11, 12].

In addition, K-12 schools around the world, and even some

universities (including Harvard and the University of

California, Berkeley), use Scratch as a first step in

programming [13]. To enable a smooth transition from

programming in visual environments (Scratch, Alice) to

creating Android applications, MIT App Inventor can be used.

App Inventor (AI) is a visual programming environment

that allows users to easily develop mobile apps for Android-

based smartphones without writing code. This environment

can be studied in an information technology course, because

AI is easy to learn, accessible and helps students solve

problems [14]. The advantage of using such a tool is the great

motivation of students to develop mobile applications. In

addition, students acquire knowledge about the development

of interface design, object programming and events in the

development of mobile applications [15].

Taking into account the opinions of researchers on the need

to bridge the knowledge gap through the principle of

continuity in learning content [16, 17], motivation to learn

programs in primary and secondary schools [5, 6], the

effectiveness of learning programs in Scratch and further

transition to development of mobile applications in App

Inventor [9, 10, 13], this paper proposes a spiral model of

teaching programming and development of mobile

applications in high school and university in the context of the

Serbian education system, which can be used in countries with

similar education systems [18]. A spiral model of teaching

mobile application development is presented in Fig 1.

III. COMPUTER SCIENCE CONTENT AND

PROGRAMMING LEARNING

Currently, Serbian schools are moving to updated contents

of curricula, in the context of integration into world

educational practice, while maintaining the best traditions and

standards of national education. According to the updated

curriculum, the compulsory subject of informatics and

computer science was introduced in primary school, and the

subject of informatics was innovated in secondary schools.

The subject of informatics and computer science is a practical

discipline that emphasized the development of skills for

efficient and correct use of information and communication

technology tools (mobile phones, computers, players, digital

cameras, video cameras, etc.) in learning activities and

everyday life. Informatics in high schools is a theoretical

discipline that focuses on methods and processes of

information transformation using computers. The curriculum

of informatics has been developed on the basis of the spiral

principle, according to which most of the goals and topics of

learning after certain academic periods of teaching (during the

school year or in the following classes) are repeated at

increasingly complex levels.

Programming is taught from the 5th grade of elementary

school to the 4th grade of high school. Content includes

learning:

1. game programming environments - Scratch (grades 5-6);

2. integrated environment for software development and

high-level programming languages C / C ++, Python, Delphi,

Lazarus, etc. (7th grade of primary school and 1st grade of

secondary school);

3. object oriented programming with C / C ++, Python,

Delphi, Lazarus, etc .; web programming with HTML, XML,

scripting language (2nd to 4th grade of high school);

development of mobile applications (3rd to 4th grade of high

school).

In addition, analysis of the goals of high school curriculum

on computer science shows several shortcomings of the

updated curriculum on programming such as:

1. The choice of programming environment is made

without proper thinking. Thus, from 5th to 6th grade, it is

suggested to learn visual programming environments such as

Scratch, which enable the programming of multimedia stories,

games, without writing code;

2. Emphasis is placed only on mastering the programming

of linear, branched and loop structures, classification of data

types, one-dimensional arrays, components of the integrated

development environment;

3. In 3rd and 4th grade of high school, the topic of “Mobile

Application Development” is covered, but no mobile

application development environment is considered and only a

few hours are allocated.

Updated computer science curricula in high school offer

more modern content, focused on world educational paths and

correspond to state-of-the-art computer technology. However,

it is necessary to contribute to creating a seamless continuum

between educational levels and well-thought choose

environments and topics on programming with a further focus

on the development of smart devices and mobile applications.

IV. RESULTS

During the summer IT school, experimental training was

conducted on the course "Fundamentals of iOS application

development" for first year students of the IT faculty. A total

of 72 people were included. To conduct a comparative

analysis, students were divided into three groups: students as

Fig. 1. Spiral model of teaching mobile application development

teachers of computer science, students of IT majors and IT-

faculty. Before training preliminary testing and survey were

conducted to determine the level of basic knowledge of

programming. Testing showed a very low level of basic

knowledge of students - teachers of computer science - at the

level of 48%. Students of IT-majors have a basic

programming knowledge of 76%. IT faculty showed the

highest result of 97%. In order to answer the research

question, an analysis of knowledge was held in order to

determine in which topics students have shortcomings and

how this affects the achievements in the development of

mobile applications. The preliminary assessment test included

questions on basic topics, namely knowledge of algorithmic

structures, software development life cycle phases, code

debugging, input-output operators, loop operators,

mathematical functions, principles and concepts of object-

oriented programming.

Fig. 2. The results of preliminary testing on programming in the

context of basic topics

As shown in Fig. 2 Computer science teachers are at the

lowest level of basic knowledge in all topics. They show an

insufficient level of knowledge, less than 50%, on such topics

as loop operators, mathematical functions, principles and

concepts of object-oriented programming. On the topics of

algorithmic structures, phases of the software development

life cycle, elimination of program code errors, input-output

operators show the average level of basic knowledge. Such a

low level of basic knowledge is explained by the fact that high

school students learned only the Pascal programming

language for a short duration of the course (Fig. 3).

Fig. 3. The results of the survey "What programming languages

have you been studying earlier?"

Students of IT-majors have an insufficient level of basic

knowledge about "Mathematical functions" (less than 50%).

In topics such as Software Development Lifecycle Stages,

Code Troubleshooting, Loop Operators they display an

average level of knowledge. In the topics of Algorithmic

Structure, Principles and Concepts of Object Oriented

Programming have a high level of basic knowledge.

This Gap in the knowledge of IT- majors and computer

science teachers is a consequence of the Gap in curricula. At

school all students learned Pascal, and in the first year IT

students, unlike teachers, learned Java, C #, C ++, Delphi

(Fig. 3).

The highest level of knowledge is displayed by faculty who

have a certain experience in teaching programming languages

and software development. In all topics, the level of basic

knowledge is sufficient and high (Fig. 2). As shown in the

diagram (Fig. 3), the faculty pointed to the knowledge of the

languages Pascal, C ++, C#, Java, Delphi, PHP, Objective C.

Thus, preliminary testing showed different levels of basic

programming knowledge, depending on the level of high

school and university training. To determine the impact of the

basic programming knowledge on the further achievement of

mobile application development, it is need to consider the

content and learning outcomes of the course Basics of iOS

apps development.

During the practical course "Basics of iOS application

development", summer school participants learned how to

develop mobile applications in the X-code environment in the

Objective-C language. The following topics were covered

during the course to lay the foundation for knowledge about

mobile application development:

1. Basics of creating a Single View application

2. UI controllers

3. Use of multimedia

4. Sensors in the application

5. Programming complex View

6. SQLite database

7. Final project

During the course, participants learned how to develop

mathematical models and algorithms for mobile applications

using demo examples of mobile applications. During the

practical session, students created applications in accordance

with the instructions, tested them and eliminated errors. To

consolidate skills within individual work, students developed

their own applications, working in a small team. Such

organization of the course enabled the implementation of a

spiral model, which proposes the enrichment and

improvement of developed mobile applications.

The knowledge and skills to develop mobile applications

was assessed in two ways: achievement test and criterial

assessment of developed projects. Assessment of mobile

applications took into account the following criteria:

understanding of the task, the correctness of the algorithm for

problem solving, application logic, programing technique,

user interface design style, teamwork, self sufficiency of

teamwork. The results of achievement test and evaluation

developed projects for the three groups are shown in Table 1.

TABLE I

THE RESULTS OF THE ACHIEVEMENT TESTING AND EVALUATION

APPLICATION OF COURSE PARTICIPANTS (AVERAGE VALUE)

As can be seen from the table, computer science teacher are

still lagging behind in the knowledge of mobile application

development from IT-Majors. Observation and achievement

test results showed that students found difficulty in

developing application logic, coding and debugging a mobile

application. This indicates a poor development of CT among

students, that is, the ability to analyze and solve a problem,

logically analyze the program code and gain experience from

it. However, a special approach to the course teaching, based

on the spiral principle and collaborative interaction between

lecturer and students, allowed to achieve the learning

objective and to motivate computer science teachers. The

survey results show a high motivation (100%) to continue

learning the course mobile development, which is explained

by the popularity of the mobile computing field.

V. CONCLUSION

Studying international experiences in overcoming the

knowledge gap of students at high school and university level,

we can conclude that one of the possible approaches to

solving the research issue is rearranging school and university

curricula with progressive improvement and development of

knowledge from basic programming for mobile application

development. Thanks to this approach, teaching units that are

established at the basic level are progressively improved from

one educational phase to another and develop appropriate

skills. In this regard, it is advisable to implement a spiral

model of teaching the development of mobile applications,

according to which the content of learning in high school and

university should be planned in accordance with the spiral

principle [19]. This model should be applied to all IT students,

including computer science teachers who must master mobile

technologies at a professional level in order to be able to apply

them in the educational process.

ACKNOWLEDGEMENT

Ministry of Education, Science and Technological

Development, Republic of Serbia financially supported this

research, under the project number TR32044: “The

development of software tools for business process analysis

and improvement”, 2011-2020.

REFERENCES

[1] Pinar, Muyan-Özçelik (2017). A hands-on cross-platform

mobile programming approach to teaching OOP concepts and

design patterns, Proceedings of the 1st International Workshop

on Software Engineering Curricula for Millennials, May 20–28,

Buenos Aires, Argentina.

[2] Z. Nurbekova, G. Aimicheva, (2018) «Teaching Mobile

Application Development: from the Idea to the Result», 3rd

International Conference on Computer Science and Engineering

(UBMK) IEEE, pp. 666-669, 2018.

[3] Taft, D. K. (2007). Programming grads meet a skills gap in the

real world.

[4] Alston, P. (2012). Teaching Mobile Web Application

Development: Challenges Faced And Lessons Learned, In:

Proceedings of 13th Annual Conference on Information

Technology Education (SIGITE ‘12), 239–244.

[5] Dillashaw, F., & Bell, S. (1985). Learning outcomes of

computer programming instruction for middle-grades students:

A pilot study, Proceedings of the 58th annual meeting of the

National Association for research in science technology.

[6] Scherer, R., Siddiq, F., & Sánchez Viveros, B. (2018). The

cognitive benefits of learning computer programming: A meta-

analysis of transfer effects. Journal of Educational Psychology.

[7] Kafai, Y., & Burke, Q. (2013). Computer programming goes

back to school. Phi Delta Kappan, 95(1), 61–65.

[8] Inhelder, B., & Piaget, J. (1958). An essay on the construction

of formal operational structures. The growth of logical thinking:

From childhood to adolescence (A. Parsons & S. Milgram,

Trans.). New York: Basic Books.

[9] Saltan, F. (2016). Looking at algorithm visualization through

the eyes of pre-service ICT teachers. Universal Journal of

Educational Research, 4(2), 403–408.

[10] Cheung, J., Ngai, G., Chan, S., and Lau, W. (2009). Filling the

gap in programming instruction: A text-enhanced graphical

programming environment for junior high students, SIGCSE

Symposium on Computer Science Education, Chattanooga, TN,

March 2009, pp. 276–280.

[11] Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond,

E. (2010). The scratch programming language and environment.

ACM Transactions on Computing Education (TOCE), 10(4), 16.

[12] Funke, A., Geldreich, K., & Hubwieser, P. (2017). Analysis of

scratch projects of an introductory programming course for

primary school students. In 2017 IEEE Global Engineering

Education Conference (EDUCON) (pp. 1229-1236). IEEE.

[13] Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N.,

Eastmond, E., Brennan, K., . & Kafai, Y. B. (2009). Scratch:

Programming for all. Communications of the ACM, 52(11), 60–

67.

[14] Morelli, R., de Lanerolle, T., Lake, P., Limardo, N., Tamotsu,

E., & Uche, C. (2011). Can android app inventor bring CT to k-

12. In Proc. 42nd ACM technical symposium on Computer

science education (SIGCSE'11).

[15] Wagner, A., Gray, J., Corley, J., and Wolber, D., (2013). Using

App Inventor in a K - 12 Summer Camp, SIGCSE '13 , 621–

626.

[16] Stone, J. A. (2019). Student perceptions of computing and

computing majors. Journal of Computing Sciences in Colleges,

34(3), 22–30.

[17] Dodero, J.M., Mota, J.M., & Ruiz-Rube, I. (2017). Bringing CT

to teachers' training: A workshop review. In Proceedings of the

5th International Conference on Technological Ecosystems for

Enhancing Multiculturality (p. 4). ACM.

[18] Aimicheva, G., Kopeyev, Z., Ordabayeva, Z. et al. A spiral

model teaching mobile application development in terms of the

continuity principle in school and university education. Educ Inf

Technol 25, 1875–1889 (2020).

[19] Bruner, J. S. (1960). The process of education. Cambridge:

Harvard University Press.

