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Abstract—Processing and classification of electrocardiogram 
(ECG) recordings are some of the most challenging fields of 
biomedical signal processing owing to the fact that ECG signals 
commonly exhibit complex temporal morphology and contain 
numerous artifacts of data collection process.  This paper 
presents study of filter bank based processing of ECG signal for 
the purpose of atrial fibrillation diagnostics. The examined 
diagnostic system relies on the statistical description of signal’s 
energy distribution in the individual filter banks as a feature 
vector for the considered classification algorithms, namely 
Support Vector Machines (SVM) and Artificial Neural Networks 
(ANN).  The considered statistical measures include mean, 
variance, skewness and kurtosis.  The effect of filter bank 
number on the ability to differentiate between atrial fibrillation 
and healthy ECG signals is examined and the diagnostic 
relevance of each statistical parameter is also ascertained.  A 
systematic study of diagnostic accuracy is imposed on the choice 
of feature vector, whereby various combinations of filter banks 
and the statistical measures are evaluated.  The results show that 
the an optimal selection of sub-bands in conjunction with the 
appropriate choice of statistical descriptors can lead to a 
considerable reduction in the feature vector size without adverse 
effects on classification accuracy levels. 
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I.  INTRODUCTION  
Electrocardiogram (ECG) is a time-varying signal 

corresponding to the electrical activity of cardiac muscle and is 
readily obtained as a measurement of the potential difference 
between electrodes placed on a surface of the skin.  

 Even after decades of research, ECG signal analysis 
remains one of the most challenging undertakings in modern 
biomedical signal processing.  ECG signal can be described as 
a non-stationary, quasi-periodic waveform that frequently 
exhibits complex non-linear temporal morphology and to 
various degrees, contains artifacts of data collection process, 
such as baseline wander (caused by respiration) and high-
frequency electromyography noise that arises from muscle 
activity.  

Over the years, a number of approaches to ECG signal 
analysis have been proposed, including Gauss curve modeling 
via nonlinear optimization algorithms [1],  Hilbert Transform 
based modeling [2], Characteristic Waveform modeling [3], 
Mealy and Moore automata model [4], threshold methods [5], 
wavelet transform and principal component analysis [6], 
Archetypical Analysis [7], Hidden Markov modeling [8], [9], 
and Filter Bank approach [10], [11]. 

By decomposing signal into various frequency sub-bands, 
Filter Bank (FB) approach enables independent processing of 
temporal and spectral domains.  Filter Bank signal processing 
methods have been successfully employed on range of ECG 
applications, including beat detection; beat classification, ECG 
enhancement and noise alert [10-13].    

This paper presents a study of filter bank based processing 
of ECG signal for the purpose of atrial fibrillation diagnostics. 
The proposed system employs the filter bank approach to 
decompose an ECG signal into a number uniformly distributed 
frequencies intervals to derive the energy distribution in the 
individual filter banks. A set of statistical measures are used to 
describe the energy distribution in each sub-band and to form 
a feature vector for the ECG signal.  Support Vector Machines 
(SVM) and Artificial Neural Networks (ANN) are considered 
as the principal algorithms for the classification of the ECG 
feature vectors.  In this paper, the effect of filter bank number 
on the diagnostic accuracy is examined. The diagnostic 
relevance of each statistical parameter and individual sub-
bands is studied.  Furthermore, in a systematic study of feature 
vector candidates, an attempt is made to reduce the feature 
vector size without significantly sacrificing diagnostic 
accuracy. The feature vector size reduction is based on the 
optimal selection of sub-bands and statistical descriptors.  

The remainder of this paper is organized as follows. In 
Sections II, a review of considered classification algorithms, 
namely ANN and SVM is provided.  The proposed system for 
classification of the ECG signal is presented in Section III.  
Section IV presents and discusses the experimental results. 
Section V concludes the paper.  



 
Figure 1.     SVM hyperplane 
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Figure 2.     ANN Structure 

 

II. CLASSIFICATION ALGORITHMS 
In this section, a review of the considered classification 

algorithms is presented. 

A. Support Vector Machine  
The basic principle behind SVM is to map the input vector 

to a higher dimensional space and to construct a hyperplane to 
classify the training data [14] [15], as illustrated in Fig. 1.  In 
order to maximize the distance between the two classes and to 
get the optimal hyperplane, two parallel hyperplanes are 
constructed on each side of the separating hyperplane. The 
larger distance between these two hyperplanes means the 
better classification. Based on the sample class, parallel 
hyperplanes are constructed in form of: 

 1 bwx    

Where w represents a p-dimensional vector and b is the 
offset parameter that enables increasing the separating 
hyperplane margin.   All the points x along the hyperplane, 
represent the supporting vectors of the hyperplane. The 
optimal separating hyperplane can be found by using 
Lagrange multipliers, as in: 
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Here, ia  represents a Lagrange’s multiplier. Lagrange 
multiplier are minimized with respect to w and b and 
maximized with respect to ia  for ( ia >0). Primal or dual form 
can be used for solving this problem. Under the SVM 
framework, nonlinearity of classification process is addressed 
via kernel functions.  In this paper, it is assumed that linear 
separation of features is not possible and thus, SVM is 
employed in conjunction with the Radial Basis Function 

‘kernel’ method, with the following mapping being applied on 
given feature space: 
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 Here,   denotes the kernel parameter. The RBF kernel 
maps samples nonlinearly and compared to polynomial kernel 
it has less hyperparameters and numerical difficulties. 

B. Artificial Neural Networks 
Fig. 2 presents a schematic diagram of a general artificial 

neural network architecture consisting of L inputs, J neurons 
in a hidden layer and K outputs.  Each neuron computes the 
weighted sum of its inputs and subsequently, passes the output 
through a activation function to obtain a neuron response. The 
most important features of neural network classifier are related 
to its architecture, the choice of activation function and the 
choice of training method.  The informal experiments have 
shown that a 6-neuron hidden layer structure in conjunction 
with a sigmoid activation function and the Levenberg-
Marquardt training algorithm constitute the optimal ANN 
design under the proposed classification scheme. 

The Levenberg-Marquardt method is, effectively, a hybrid 
algorithm that combines the advantages of the second order 
Gauss-Newton method and the first order Steepest Descent 
[16].  The Levenberg-Marquardt learning method adopts a 
general second order learning formulation:  

 0,1  
 mmmmmm gHwΔwww 1  

Here, mw , mg denote the ANN weight values and the error 
derivative at iteration step m, respectively.  However, in 
Levenberg-Marquardt learning method, Hessian matrix H, is 
modified to include a conditioning term Ie  , which ensures 



that the approximated Hessian matrix is readily invertible. The 
Levenberg-Marquardt weight update takes the following form.  
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Here, I represents the identity matrix, e denotes a natural 
exponential, while λ corresponds to an automatically evaluated 
constant that ensures the stability of solution.  The Jacobian 
matrix J represents the first order derivative and can be 
expressed as:  
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Here, ep,i represents training error for ith output for the pth 
training pattern.   

III. ECG CLASSIFICATION SYSTEM  
Fig. 3 presents a block diagram of the proposed system for 

atrial fibrillation diagnostics based on classification of features 
derived from spectral analysis of ECG signal.  The 
classification feature vectors are derived in the following 
manner.  An FIR Filter Bank, is used to decompose the ECG 
signal into N uniformly distributed frequencies intervals in the 
range from 0Hz to 62.5 Hz. The upper limit of the considered 
frequency range is selected as the value that is only marginally 
lower than the maximum frequency represented by a signal 
with the sampling rate of 128Hz.  This sampling frequency 
value corresponds to the lowest sampling frequency in the 
considered evaluation database.  The low-pass, high-pass and 
the band-pass filters in the filter bank are designed as finite 
impulse response filters with 60 coefficients.  All filters in the 
filter-bank exhibit linear phase property and have the identical 
group delay.  For each sub-band, energy of the ECG signal is 
evaluated over the duration of 5 seconds, every 5 seconds.  
Subsequently, the energy in each sub-band is scaled to 
represent the percentage of total energy found in the range of 
0-62.5 Hz.  The energy values are collected for each sub-band 
over the preset time duration. Subsequently, four statistical 
parameters, namely mean, variance, skewness and kurtosis are 
used to independently describe the energy distribution in each 
sub-band.  These parameters are concatenated to form a 4xN 
long ECG feature vector.  When a database of feature vectors 
representing the healthy and pathological ECG signals is 
formed, the feature vectors are normalized using z-score 
normalization method.   The normalized feature vectors are 
employed for training of testing of a classification algorithm.  
In this paper, support vector machine and artificial neural 
network are considered as candidates for ECG classification.  

 

 

IV. RESULTS AND DISCUSSION 
The performance of the proposed ECG classification 

method is evaluated on a database of 76 one-hour-long 
examples of ECG signal waveforms [23], including 38 
examples of healthy control subjects from the Fantasia 
database, sampled at 250 Hz, 38 examples of Atrial 
Fibrillation from the Long Term AF Database, sampled at 128 
Hz.  Prior to the experiment all the data are re-sampled at 128 
Hz and the baseline wander is removed from the signal with 
the linear phase, high-pass with the cutoff at 0.8 Hz.   

The dataset is randomly divided into training (60% of 
available data) and testing data (40% of available data).  The 
classification performance is evaluated in terms of sensitivity 
(Se), specificity (Sp) and accuracy (Acc), defined in (7), (8) 
and (9), respectively. 

 )/( FNTPTPSe    

 )/( FPTNTNSp    

 )/( FNFPTNTPTNTPAcc    

Here, TP and TN denote the number of true positive and 
true negative cases, respectively, while FP and FN denote the 
number of false positive and false negative cases, respectively.  
The classification accuracy results are reported as the median 

 

Figure 3.      A proposed system for  ECG diagnostics 



of classification accuracy values collected from an ensemble 
of 50 independent training and testing scenarios.   

In the first experiment, while using the same set of 
statistical measures for characterization of sub-band energy 
distribution, the effect of filter bank number on the ability to 
differentiate between atrial fibrillation and healthy ECG 
signals is examined.  The number of filter banks is varied in 
the range between 4 to 12 filters.  In each case, the statistical 
description of a sub-band energy distribution is characterized 
by all four of the considered statistical measures, namely 
mean, variance, skewness and kurtosis. The results are 
reported in Table I.  The results show that SVM outperforms 
ANN classification algorithm in terms of overall classification 
accuracy.  Thus, for SVM, the classification performance is 
examined in more detail and the sensitivity and specificity 
results are also reported.  The results from Table I indicate that 
the classification performance is strongly affected by the 
choice of filter bank number. The highest SVM and ANN 
classification accuracy levels of 87.1% and 84.6%, 
respectively, are attained when the ECG signal is decomposed 
into 6 uniformly distributed frequencies intervals in the range 
from 0-62.5 Hz.  As the number of filter banks is increased or 
lowered from the optimal value, the quality of classification 
performance clearly diminishes.  The sensitivity and 
specificity results closely follow the classification accuracy 
levels and are similarly affected by the filter bank number.  
When all four statistical measures are employed, the size of 
the feature vector corresponding to the optimal number of 
filter banks is 24. 

In the next section, the relevance of individual sub-bands 
for the quality of diagnostic performance is evaluated using a 
6 filter-bank system.  Feature vectors are derived using the 
information from a single sub-band only. Again, all four 
statistical measures are employed to characterize the energy 
distribution in individual sub-bands.  The classification 
accuracy results are reported in Table II, for each of 6 sub-
bands.  In this experiment, SVM and ANN offered a very 
similar performance. The results show that compared to the 
remaining sub bands, the features based on the lowest 
frequency band offer the smallest capacity to successfully 
differentiate between atrial fibrillation and healthy ECG 
signals.  The results would indicate that the 3rd and 2nd sub-
bands have the highest diagnostic relevance, closely followed 
by 5th, 6th and 4th band.   

The next experiment aims to address the effect of using 
information from multiple sub-bands in the feature vector 
derivation on the quality of atrial fibrillation diagnostics.  In 
fact, we aim to ascertain the specific combination of sub-
bands that would minimize the feature vector size, without the 
undesired decrease in the classification accuracy level.  
Although, exhaustive evaluation of sub-band combinations is 
performed, only the most relevant results are reported in Table 
III.  The results show that a direct combination of sub-bands 
with the highest diagnostic relevance, as evaluated in the 
previous experiment, does not necessarily result in the 
expected increase in the accuracy rate.  Individually, 2nd and 
3rd bands have the highest diagnostic relevance, but the 
combined set of features from the two bands does not lead to 
an accuracy level higher than that attained on the 3rd sub-band 

alone (SVM classification accuracy = 83.9%).  A similar 
observation was made when the features from spectrally 
adjacent sub bands 5th and 6th were combined.  This 
observable fact indicates that there exists a significant amount 
of information redundancy associated with the identification 
of atrial fibrillation between the individual sub-bands and 
especially, between the adjacent sub-bands.  The sub-band 
pairing that produced the highest classification accuracy of 
85.4%, involved the 3rd and 4th sub-bands and was associated 
with SVM classifier.  In consideration of the minimum 
number of sub-bands required to reach the same accuracy 
level as when all the bands were used, it was found that a 12 
parameter long feature vector, derived exclusively from the 
3rd, 4th and 6th band, attains a maximum attainable accuracy 
rate of 87.1%.  Thus, it can be concluded that through a 
careful selection of sub-bands, a 50% reduction in feature 
vector size can be attained, without sacrificing the accuracy 
rate of a classifier.   

This study also considered the diagnostic relevance of each 
statistical parameter.  When individual statistical measures are 
considered in isolation in the experiment involving all 6 sub-
bands, the mean and variance of sub-band energy distribution 
are demonstrated to be the most effective in representing the 
heart condition relevant information, Table IV.  When using 
mean value alone as a feature vector parameter a classification 
accuracy level of 83.9% is achieved for both SVM and ANN 
classification algorithm. Nevertheless, the results also 
establish that the skewness and kurtosis values are very 
relevant measures for the ECG diagnostics.  When used in 
combination on all six sub-bands, the mean and variance of 
sub-band energy distribution form a 12 parameter long feature 
vector that can result in a maximum attainable accuracy level 
of 87.1%.  Thus, it can be concluded that the optimal selection 
of statistical measures for the sub-band energy distribution can 
yield up to 50% reduction in the feature vector size without 
any detrimental effects on the classification performance.   

In the final experiment, an attempt is made to reduce the 
number of statistical measures characterizing the energy 
distributions in the 3rd, 4th and the 6th band, while still attaining 
the accuracy level of 87.1%.  The results are reported in Table 
V.  It was found that at least 3 statistical measures are 
necessary, namely mean, variance and kurtosis for the 
classifier accuracy level to remain unchanged.  This 
corresponds to a 9 parameter long feature vector and the SVM 
classifier.  The specificity and sensitivity results for the SVM 
classifier are also reported.  It can be observed that they 
closely related to classification accuracy results. 

The results show that through an optimal selection of sub-
bands and statistical descriptors a 62.5% reduction in the 
feature vector size can be achieved, without reduction in the 
classification accuracy level - 87.1%.  The ability to reduce 
the size of feature vector without detrimental effects on the 
classification performance is attributed to the redundancy in 
diagnostically relevant information among different sub-bands 
as well as among different statistical measures.  The decrease 
in the dimensionality of pattern representation has 
implications in the classification speed increase and lowering 
of computational cost. 



TABLE I.  CLASSIFICATION ACCURACY VS FILTER BANK NUMBER 

Number of Filter Banks in the range 0-62.5 Hz 
 

N=4 N=5 N=6 N=7 N=8 N=10 N=12 

  No. Features 16 20 24 28 32 40 48 

  ANN accuracy 81.9% 81.2% 84.6% 77.4% 77.5% 77.4% 77.4% 

  SVM accuracy 83.9% 83.9% 87.1% 80.6% 80.6% 83.9% 80.6% 

SVM sensitivity 82.4% 84.2% 86.7% 84.6% 80.% 78.6% 80.0% 

SVM specificity 85.7% 83.3% 87.5% 77.7% 81.3% 88.2% 81.2% 

 
 

TABLE II.  CLASSIFICATION ACCURACY FOR INDIVIDUAL SUBBANDS 

Sub-bands 6  Filter 
Banks S1 S2 S3 S4 S5 S6 

Frequency 
range (Hz) 

0-10.4 10.4-20.8 20.8-31.3 31.3-41.7 41.7-52.1 52.1-62.5 

No. 
Features 4 4 4 4 4 4 

ANN 
accuracy 61.3% 80.6% 83.9% 61.3% 74.2% 74.2% 

SVM 
accuracy 54.8% 80.6% 83.9% 64.5% 74.2% 71.0% 

 

TABLE III.  OTIMIZING SUBBAND SELECTION FOR CLASSIFICATION 

Sub-bands 6  Filter 
Banks S3+S2 S3+ S4 S3+S5 S3+S6 S2+S4 S3+S4+S6 

No. 
Features 8 8 8 8 8 12 

ANN 
accuracy 80.6% 83.8% 70.9% 80.6% 80.6% 80.6% 

SVM 
accuracy 83.9% 85.4% 80.6% 83.9% 83.9% 87.1% 

 

TABLE IV.  CLASSIFICATION ACCURACY VS. SIGNAL MEASSURES  

Measures constituting a feature vector 
6  Filter 
Banks mean variance skewness Kurtosis mean & 

variance 

Mean & 
variance & 
skewness 

all 

No. 
Features 6 6 6 6 12 18 24 

ANN 
accuracy 83.9% 79.0% 77.4% 77.4% 83.8% 80.6% 84.6% 

SVM 
accuracy 83.9% 80.6% 77.4% 77.4% 87.1% 87.1% 87.1% 

 
 

V. CONCLUSION 
This paper presents a systematic study on the use of 

feature vectors derived from the filter bank processing of ECG 
signal for the diagnostic applications of heart conditions, and 
in particular atrial fibrillation.  Here, the considered ECG 
features are derived as a set of statistical descriptors (mean, 
variance, skewness and kurtosis) of the energy distribution in 
the individual filter banks.  

TABLE V.  OPTIMIZING THE SUBBAND SELECTION AND THE CHOICE OF 
FEATURE VECTOR MEASSURES  

Sub-bands 6  Filter 
Banks S3+S4+S6 S3+S4+S6 S3+S4+S6 S3+S4+S6 

Meassures mean & 
variance 

mean & variance 
& kurtosis 

Mean & variance & 
skewness all 

No. 
Features 6 9 9 12 

ANN 
accuracy 83.9% 83.9% 80.6% 80.6% 

SVM 
accuracy 83.9% 87.1% 83.9% 87.1% 

SVM 
sensitivity 76.5% 86.7% 83.3% 81.3% 

SVM 
specificity 92.9% 87.5% 84.6% 93.3% 

 
 

In addition, both the Artificial Neural Networks and 
Support Vector Machines are considered as the ECG 
classification algorithms and the optimal choice is evaluated.   
The results have shown that the classification accuracy is 
strongly affected by the choice of filter bank number.  When 
all four statistical measures were employed, the highest 
classification accuracy rate of 87.1% is attained when the 
ECG signal is decomposed into 6 uniformly distributed 
frequencies intervals in the range from 0-62.5 Hz. This 
accuracy level corresponds to a 24 parameter long feature 
vector and the SVM classifier.   

The diagnostic relevance of individual sub-bands is 
evaluated for a 6-filterbank system.    The results show that 3rd 
and 2nd band, followed by 5th, 6th and 4th band are the most 
relevant bands for atrial fibrillation diagnostics.    The results 
of a more in-depth study show that a direct combination of 
sub-bands with the highest diagnostic relevance does not 
necessarily result in the expected increase in the accuracy rate.   

In fact, the sub-band pairing that produced the highest 
classification accuracy of 85.4% (SVM classifier) is 
associated with the 3rd and 4th sub-bands.  In an attempt to 
minimize the number of required sub-bands, while keeping the 
classification accuracy of level of 87.1%, a 12 parameter long 
feature vector is derived exclusively from the 3rd, 4th and 6th 
band. 

In addition, the diagnostic relevance of each statistical 
parameter is ascertained.  In the experiment involving all 6 
sub-bands, when individual statistical measures are considered 
in isolation, the mean and variance of sub-band energy 
distribution are demonstrated to be the most effective in 
discriminating between atrial fibrillation and healthy ECG 
signals.  In a study involving various combinations of 
statistical descriptors and the choice of sub-bands, it was 
found that a classification accuracy level of 87.1% can be 
reached using a 9 parameter long feature vector based on only 
three sub-bands and three statistical measures.  The results 
show that through the careful selection of sub-bands and 
statistical descriptors, a 62.5% reduction in the feature vector 
size can be attained without any detrimental effects on the 
classification performance.   This observable fact can be 
attributed to the redundancy in diagnostically relevant 



information among the different sub-bands as well as among 
the different statistical measures.  The decrease in the 
dimensionality of pattern representation has implications in 
the classification speed increase and lowering of 
computational cost. 
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