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Abstract—In this paper, we explore how to use spatial context
for image inpainting and we test it in two applications: photo-
editing and crack removal in digitized old paintings. Context
is determined based on the texture and color features. We use
these contextual features to guide the search for image patches
that can fill in the missing/damaged regions in a visually plausible
way. A priori knowledge about spatial consistencies (similarities)
among neighbouring image patches is encoded via a Markov
Random Field (MRF) model. With this prior, the process of image
inpainting is formulated as an optimization problem. We define
an efficient inference engine as a valuable alternative to the so-
called belief propagation methods. As a case study, we focus on
crack removal from the Adoration of the Mystic Lamb (brothers
Van Eyck, 1432), demonstrating potentials for virtual restoration
of old paintings.

I. INTRODUCTION

Image inpainting, or image completion, is an image pro-
cessing task of filling in the missing region in an image in a
visually plausible way. Applications include image restoration
(e.g. scratch or text removal), image coding and transmission
(e.g. recovery of missing blocks), photo-editing (e.g. object
removal), virtual restoration of digitized paintings (crack re-
moval), etc. In this paper, we will consider two applications:
photo-editing and crack removal.

Specifically, for crack removal we will use the Adoration
of the Mystic Lamb, also known as the Ghent Altarpiece as a
case study (see Fig. 1). The polyptych consisting of 12 panels,
dated by inscription 1432, was painted by Jan and Hubert van
Eyck and is considered as one of the greatest masterpieces.
It is still located in the Saint Bavo Cathedral in Ghent, its
original destination. As in most 15th century Flemish paintings
on Baltic oak, fluctuations in relative humidity, acting over
time on the wooden support, caused age cracks, which is one
of the most common deteriorations in old paintings. These
cracks form an undesired pattern that is, however, inherent to
our appreciation of these paintings as old and valuable. Yet,
for specialists in visual perception for example, it is of interest
how our perception of the painting is affected when observing
it before the ageing process. Moreover, the crack patterns not
only make art historical analysis more difficult, but also in the
example of the inscribed text (see Fig. 1c), the palaeographical
deciphering. Therefore, an important task for the restoration of
digitized paintings is the automatic detection and removal of
cracks, which is a very difficult and delicate problem.

In literature, two categories of image inpainting ap-
proaches can be distinguished: diffusion-based and patch-

based. Diffusion-based methods [3], [4] fill in the missing
region by smoothly propagating information from the bound-
ary to the interior of the missing region by diffusion process.
Important is to propagate linear structures, e.g. object lines and
boundaries, by continuing the lines that arrive at the border of
the missing region inside the hole. This propagation includes
solving partial differential equations (PDE). These methods
only use information in the immediate surrounding of the
missing pixel to infer its value, thus they can also be referred to
as pixel-based. Pixel-based approaches yield good results when
inpainting long thin regions, such as cracks, so they were often
used for crack inpainting. Crack inpainting methods considered
in literature so far include order statistics filtering [5], [6], con-
trolled anisotropic diffusion [5] and interpolation [7]. However,
diffusion-based methods in general experience difficulties in
replicating texture and introduce blur when filling in larger
holes.

Patch-based methods [8] fill in the missing region patch-
by-patch by searching for well-matching replacement patches
in the available (undamaged) part of the image and copying
them to corresponding locations. Additionally, emphasis is put
on structure propagation by, for example, defining the filling
order [8]–[10]. Compared to the diffusion-based methods,
patch-based methods produce better results, especially when
inpainting large missing regions.

Patch-based methods can be categorized into “greedy” [1],
[8], [11], [12], non-local [10], [13] and global [9], [14], [15].
The “greedy” ones choose only one best match at a time, which
may be quite limiting and cause visually inconsistent results,
while non-local methods choose multiple candidate patches
and the final patch represents their weighted average [10] or
their sparse combination [13]. Finally, global methods define
inpainting as a global optimization problem. This, in addition
to the choice of multiple candidates (called labels), allows for
one label to be chosen eventually for each position so that
the whole set of patches (at all positions) minimizes a global
optimization function. An efficient optimization approach for
this problem, using belief propagation, was proposed in [9].
Major problem with this type of approaches is complexity
(stemming from a huge number of candidate patches that can
cover certain position). Various solutions on how to reduce
the search for candidate patches in a meaningful way were
proposed in [10], [11], [14], [16].

In this paper, we describe a novel global Markov Random
Field (MRF) based inpainting method where contextual fea-
tures are used both to improve the inpainting result and to
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Fig. 1. Some details from the Adoration of the Mystic Lamb: (a) the piece
of jewellery in the God the Father panel, (b) Adam’s face in the Adam panel,
(c) the book in the Annunciation to Mary panel.

accelerate the search for candidate patches. The main novelty
is context-aware label selection, which limits the search for
labels to the areas of interest based on contextual information.
We employ Gabor-based texture descriptors similar to those
in [17], [18] and extend them with color information. While
the related context descriptors were used in other domains like
scene recognition [17] and scene completion using millions
of photographs [18], we do not know of any works where
such descriptors were used for patch-based image inpainting,
except in our previous work [12], [15]. We demonstrate that
the inpainting process can largely benefit from such a context
aware label search and selection, both in terms of speed and
quality. We also discuss a novel optimization approach, which
builds upon our recent inference method [19] to make it
suitable for global inpainting problem with large number of
labels.

Preliminary results of this work were presented in [15],
evaluated only on photo-editing with artificial masks. In this
paper, we apply the method also to virtual restoration of old
paintings, i.e. for crack removal. We show that the proposed
patch-based method outperforms pixel-based one, and that
the use of context can be beneficial also in this application.
Additionally, we briefly discuss alternative use of context via
segmentation, which we applied for crack removal in [1], [2].

The paper is organized as follows. The proposed context-
aware global inpainting method is explained in Sec. II, while
the experiments and results on natural images and artwork are
shown in Sec. III. The paper is concluded with Sec. IV.

II. CONTEXT-AWARE GLOBAL IMAGE INPAINTING

A. Inpainting as a global optimization problem

Consider the input image I , with Ω the region to be filled,
called the target region, and Φ the known part of the image,
called the source region. We define a Markov Random Field
(MRF) G = (ν, ε) over the target region Ω as a lattice of
overlapping w × w patches which intersect Ω. These patches
then represent MRF nodes p ∈ ν whose labels are all possible
patches xp ∈ Λ taken from Φ, while edges ε make a four
neighbourhood system around each central node. Furthermore,
data cost Vp(xp) of assigning a label xp to node p is defined
as the sum of squared differences (SSD) between the known
pixels at the node and the corresponding label pixels (note that

Fig. 2. Top: Division of the image into 5×7 non-overlapping blocks. Block
matches of blocks in dashed squares in the top image are shown in squares of
matching color. Bottom: Corresponding contextual descriptors plotted over 21
components and with values ranging between 0 and 0.04 (see text for details).

it is zero if the node is completely inside Ω). Finally, pairwise
potential Vpq(xp, xq), where p and q are neighbouring nodes,
is similarly defined as SSD between labels xp and xq in their
region of overlap. The global inpainting problem can now be
formulated as minimizing the energy

E(x) =
∑
p∈ν

Vp(xp) +
∑

(p,q)∈ε

Vpq(xp, xq). (1)

This type of optimization problems can be solved using
loopy belief propagation (LBP) algorithms [20]. The inpaint-
ing method of [9] introduced an improved version of belief
propagation called priority BP (p-BP), to deal more efficiently
with problems where each node has a huge number of labels,
as is the case here. A problem with [9] is that at the beginning
of the algorithm it involves exhaustive search for labels, which
makes it very slow, especially for bigger images. We introduce
contextual information to perform constrained search making
the algorithm thereby much faster. Therefore, our proposed
method consists of two parts: (1) context-aware label selection
and (2) efficient energy optimization.

B. Context-Aware Label Selection

Our idea is to guide the label selection by contextual
information, where context is characterized by texture and
color descriptors within a fixed block around each node.
Texture descriptors contain a set of low-level image features
that describe the texture in an image or image area. We will use
similar texture descriptors as [17], [18], which are obtained by



Algorithm 1: Algorithm for context-aware label selection
1 for p← 1 to P do // P is the number of
nodes

2 find the block Bi to which p belongs
3 compute block reliability

ρi =

{
1 if #{Bi ∩ Φ} > #Bi

2

0 otherwise
4 if ρi = 1 then
5 e(j) =

∑Nf+C
n=1 (gi(n)− gj(n))2,∀j =

{1, . . . ,MN}
6 choose K = MN/r blocks B̂ji whose gj yield

K smallest e(j)
7 define new source region Φp = ∪{B̂1

i , . . . B̂
K
i }

8 else
9 Φp = ∅

10 foreach neighbouring block Bn do
11 repeat steps 4-6 and

Φp = ∪{Φp, B̂1
n, . . . B̂

K
n }

12 end
13 end
14 end

filtering the image with a bank of multi-scale oriented filters
and then averaging the outputs within square non-overlapping
blocks [17]. Such a representation is called a gist and it gives
coarse description of textures in the image and their spatial
organization.

We divide the image into M ×N square non-overlapping
blocks (see Fig. 2) and for each block Bi we compute its
texture descriptor gi as:

gi(n) =
1

#{Bi ∩ Φ}
∑

y∈Bi∩Φ

|I(y)⊗hn(y)|2,∀n ∈ {1, . . . , Nf}.

(2)

⊗ is a convolution operator, #{Bi∩Φ} represents the number
of known pixels y in a corresponding block Bi and Nf is the
number of filters in a chosen filter bank. We use Gabor filters of
six orientations and across three scales, total of 18 filters. Then
gi is a 18-dimensional vector whose components are ordered
by orientation per each scale, from high to low scales, i.e. high
to low spatial frequencies.

In addition to texture, it is also beneficial to include color
as a feature for contextual description. Therefore, we add three
more components into the feature vector gi which represent the
average color within the block per each HSV color channel:

gi(Nf + n) =
1

#{Bi ∩ Φ}
∑

y∈Bi∩Φ

In(y),∀n ∈ {1, . . . , C},

(3)

where C = 3 is the number of color channels. The averaged
color values per channel are typically higher than averaged
filter responses. Hence, we normalize the color components
by the factor f , gi(Nf + n) = gi(Nf + n)/f , which is the
ratio between maximum value of three color components and

maximum value of the averaged filter responses on first Nf
components:

f =
maxk∈{Nf+1,Nf+2,Nf+C} gi(k)

maxl∈{1,...,Nf} gi(l)
. (4)

The resulting (Nf + C)-dimensional feature vector gi (Nf +
C = 21) shows dominant orientations and scales within the
block Bi and the average color of that block. Fig. 2 illustrates
these feature vectors corresponding to different blocks of an
image. We can see that texture features (the first Nf compo-
nents) are small for nearly flat blocks (most of the blocks in the
first two rows). For the blocks with dominant edges the peaks
appear at positions corresponding to a particular orientation
and tend to increase when the scale increases. Textured blocks
containing snow for example, have smaller descriptor values
and smaller peaks at multiple orientations.

Now we can use the feature vectors defined above to find
blocks with similar content and we will limit the label set only
to those blocks. The idea is to constrain the source region
for node p ∈ Bi to Φp ⊂ Φ, as shown in pseudo code
in Algorithm 1. The block Bi itself is always included in
this limited source region (e(i) = 0). For examples of block
matches see marked blocks at the top of Fig. 2. Note that we
also introduce binary variable ρi that represents the reliability
of the block because some of the blocks that intersect the
target region can have too little or even no known pixels
based on which context information can be obtained, in which
case we use the neighbouring information. Note that the
presented context-aware approach can be used to guide and
limit candidate patch selection in any inpainting process, i.e.
it is not restricted only to global inpainting.

C. Efficient Energy Minimization

Although we use contextual descriptors to limit the labels
to areas of interest and, therefore, substantially reduce their
number (Λp ∈ Φp, |Λp| ≈ |Λ|/r), we are still dealing with
thousands of labels per MRF node, which is too complex
for subsequent optimization. Here we introduce an efficient
inference method, by extending our recent approach from [19].

We propose to first prune the labels of each node by visiting
them in the order of priority, where both pruning and priority
are determined based on only one term for each label of a
node Dp(xp) that we call dissimilarity. This allows us to
define a computationally tractable MRF and perform simple
and fast inference method to obtain the final inpainting result.
Label pruning and priority scheduling are also present in p-
BP. However, our approach is simpler, faster, more memory
efficient and allows the application on bigger images.

A pseudo-code of this algorithm is given under Algo-
rithm 2. We can see that dissimilarity Dp(xp) is initially
computed based on the agreement of node’s labels with the
known part of the patch Vp(xp) and subsequently updated with
the neighbouring influence expressed with pairwise potential
Vpq(xp, xq), where both Vp(xp) and Vpq(xp, xq) are defined
in Sec. II-A. Based on this similarity measure, both priorities
are computed (as defined in step 4 of Algorithm 2) and label
pruning is performed: L labels with lowest dissimilarity are
kept as node’s labels, while others are discarded.



Fig. 3. Inpainting results. From left to right: image with missing region in black, results of [10], results of [9], result of the complete proposed method.

Algorithm 2: Algorithm for efficient energy minimiza-
tion
1 initialization:
2 for p← 1 to P do
3 compute Dp(xp) = Vp(xp),∀xp ∈ Λp
4 compute priority Prp = 1/#{xp|Dp(xp) < Tsim}
5 end
6 label pruning:
7 for t← 1 to P do
8 p = unvisited node of highest priority
9 apply label pruning: xp ∈ {x1

p, . . . x
L
p }, L� |Λp|

10 for any unvisited neighbour q of node p do
11 Dq(xq) = Dq(xq) + minxp

Vpq(xp, xq),∀xq ∈
Λq

12 update priority of node q, Prq
13 end
14 end
15 inference method: x̂ = arg minE(x)

At this point, we have a completely defined 4-connected
MRF, where each node p has a set of L possible labels, where
L� |Λp|, and where the potential functions are defined like in
Sec. II-A. Now we employ our recent inference method called
neighbourhood-consensus message passing (NCMP) [19] to
determine one label per node, where the set of labels x̂ over
all nodes minimizes the energy in 1. This method is simpler
and faster than belief propagation and was proved to give
good results in other patch-based MRF models. Finally, chosen
patches are stitched together in the region of overlap using
minimum error boundary cut [21], as suggested in [9].

III. EXPERIMENTS AND RESULTS

A. Photo-editing of natural images

We tested our method on a number of different natural
images for photo-editing application. The parameters of the
algorithm are the following: number of labels per node L = 10,
number of iterations of NCMP T = 10, number of chosen
blocks K = MN/r, where r = 6, and Tsim = SSD0/2,
where SSD0 is a predefined median value of SSDs between

w × w patches. Patch size w and number of blocks M × N
were varied and the optimal ones were chosen. Results on some
of the images are shown on Fig. 3. For images from top to
bottom, we used the same patch sizes for all global methods,
w = 15 and w = 13, respectively, while block divisions for
the proposed method are 5 × 7 and 3 × 4, respectively. We
can see that the proposed method gives the best results, i.e.
more accurate and more visually pleasing, compared to the
global method from [9] and state-of-the-art method from [10].
Moreover, our method is almost 5 times faster than [9]. For
example, for the image in the top row of Fig. 3, the reference
method from [9] takes 1152.8s, while the proposed method
takes 284.3s (with our MatLab implementation with w = 15).
For detailed comparison, see [15]).

B. Virtual Restoration of Old Paintings

Virtual restoration of digitized old paintings involves the
detection and removal of cracks. Cracks, once detected, can
be treated as missing regions that need to be filled in. We
focus here on the difficult problem of crack inpainting in the
Ghent Altarpiece, from which three small parts are shown in
Fig. 1. The cracks in this painting are particular in a number of
ways. Their width ranges from very narrow and barely visible
to larger areas of missing paint. Furthermore, depending on
the painting’s content, they appear as dark lines on a bright
background or vice versa. Also, since this masterpiece is rich in
delicate details, it is sometimes difficult to make a distinction
between the cracks and image content. For other particular
details, see [1], [2]. We use here the crack detection method
from [2].

Crack inpainting methods considered in literature so far
are mostly pixel-based, among which controlled anisotropic
diffusion [5] is the best performing one. In [22] a patch-
based texture synthesis method was used. However, in our
case, these pixel-based methods perform insufficiently well
due to the width of the cracks, whitish borders around them
and the quality of the scans (noise and scanning artefacts).
As a consequence, the results are blurry, as illustrated in the
middle column of Fig. 4. The results of our context-aware
global method are shown in the right column of Fig. 4. By



Fig. 4. Inpainting results for the small part of Fig. 1a (top) and Fig. 1b (bottom). From left to right: original image, result of controlled anisotropic diffusion
and result of the proposed context-aware global approach.

visual comparison, we can see that our patch-based method
outperforms the pixel-based one.

A very challenging problem for inpainting is the book in
the Annunciation to Mary panel (see Fig. 1c and the top image
in Fig. 5). In this case, accurate inpainting is very important
because of paleographical deciphering of this text [2]. Many
cracks in this panel are difficult to distinguish from the brush
strokes, and hence remain undetected. This can misguide the
inpainting process: small parts of letters appear erroneously in
the background and the other way around, parts of letters get
“deleted”, i.e. replaced by background. Moreover, positions of
cracks remain partly visible. We treated these specific problems
in detail in [1], [2], where we also proposed alternative use
of contextual information, based on image segmentation into
background and foreground. A result of this approach is
illustrated in Fig. 5.

IV. CONCLUSION

In this paper, we introduced a novel MRF based inpainting
method that uses contextual descriptors to improve the quality
and the efficiency of the inpainting process. We also proposed
a simple and efficient way to perform optimization by first
pruning the labels to some small number and then separately

employing the inference method to obtain final inpainting
result. Results in photo-editing application demonstrated the
benefits of such an approach in comparison with the state-
of-the-art methods, both in terms of quality and speed. The
proposed method also yields very encouraging results for crack
removal in digitized old paintings, as it was demonstrated on
examples from the Ghent Altarpiece.
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