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Abstract—The asynchronous cellular automaton neu-
ron model can realize a wide variety of neuron-like non-
linear behaviors. In this paper, hybrid dynamical system
perspectives of the asynchronous cellular automaton neu-
ron model are discussed. Also, a multi-compartment soma-
dendrite model based on the asynchronous cellular automa-
ton neuron model is introduced.

1. Introduction

It is no exaggeration to say that the brain and the neu-
ron are ones of the most sophisticated nonlinear dynami-
cal systems. Many hardware models of neurons have been
presented so far and their clinical and engineering applica-
tions have been also investigated intensively (see [1] and
references therein). Major hardware neuron modeling ap-
proaches include the following ones (see also Table 1).

• An analog nonlinear circuit approach that uses a non-
linear ordinary differential equation (ab. ODE) to
model the nonlinear dynamics of a neuron.

• A switched capacitor approach that uses a nonlinear
difference equation to model the nonlinear dynamics
of a neuron.

• A digital processor approach that uses a numerical in-
tegration to model the nonlinear dynamics of a neu-
ron.

• A synchronous sequential logic approach that uses a
traditional synchronous cellular automaton to model
the nonlinear dynamics of a neuron [1]-[11].

• An asynchronous sequential logic approach that uses
an asynchronous cellular automaton to model the
nonlinear dynamics of a neuron.

Advantages and significances of the asynchronous cellu-
lar automaton neuron model (e.g., low hardware cost and
dynamic reconfigurable capability) are discussed in an ac-
companying paper [12]. In this paper, rather than such
advantages, hybrid dynamical system perspectives of the
asynchronous cellular automaton neuron model are dis-
cussed. Also, a multi-compartment soma-dendrite model
based on the asynchronous cellular automaton neuron
model is introduced.
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Figure 1: Concepts of the asynchronous cellular automaton
neuron model. (a) The velocity vectors induced by syn-
chronous state transitions are characterized by a set of fi-
nite integers. The velocity vectors induced by phase-locked
state transitions are characterized by a set of finite rational
numbers. The velocity vectors induced by asynchronous
state transitions are characterized by a set of real numbers.
(b) The asynchronous transitions of the discrete states re-
alize a smooth velocity vector, a smooth vector field, and
thus a smooth bifurcation.

2. Asynchronous cellular automaton neuron model

Fig. 1 illustrates concepts of the asynchronous sequen-
tial logic neuron model. Note that this model has two dis-
crete states (V,U) but it can be generalized to a model with
any number of discrete states. The two-state model in Fig.
1 consists of the following elements.

• Registers that are responsible for storing discrete
states, e.g., a membrane potential V ∈ {0, 1, · · · ,N −
1} = ZN and a recovery variable U ∈ {0, 1, · · · ,M −
1} = ZM .
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Table 1: Hardware-oriented Neuron Modeling Approaches.
∗The asynchronous cellular automaton has discrete states and continuous state transition times.

Hardware Time and State Dynamics Control parameter
Analog Continuous time Nonlinear ODE Nonlinearity of circuit
nonlinear circuit Continuous state element such as MOSFET
Switched Discrete time Iterative map (not suited for on-chip learning)
capacitor Continuous state
Digital Numerical integration Coefficient in digitally
processor Discrete time (hardware resource implemented nonlinear function

Discrete state consuming)
Synchronous Traditional Wiring pattern among
sequential logic cellular automaton registers and logic gates
Asynchronous Continuous time∗ Asynchronous (suited for on-chip learning)
sequential logic Discrete state cellular automaton

Synonyms of “asynchronous cellular automaton ” from some perspectives:
• Asynchronous sequential logic (hardware perspective)
• Asynchronous cellular automaton (dynamical system perspective)
• Asynchronous numerical integration (computation perspective)
• Asynchronous bifurcation processor (processor perspective)

• Logic gates that are responsible for realizing nonlinear
functions, e.g., functions FV : ZN × ZM → {−1, 0, 1},
FU : ZN × ZM → { − 1, 0, 1}, BV : ZN × ZM → ZN ,
and BU : ZN × ZM → ZM .

• Reconfigurable wires that are responsible for parame-
terizing the nonlinear functions.

• State-dependent clocks that are responsible for trig-
gering transitions of the discrete states, e.g., clocks
CV (t,V,U) and CU(t,V,U) the instantaneous frequen-
cies of which depend on the discrete states (V,U).

• Like a biological neuron, the model accepts a spike-
train stimulation input S (t) from other neurons.

For simplicity, let us introduce the following notations.

“↑” denotes “a positive edge of a clock.”
“:=” denotes “an instantaneous transition

of a discrete state.”

Then, some of the asynchronous sequential logic neuron
models are described by the following formulas.

Subthreshold dynamics:
V := V + FV (V,U) if CV (t,V,U) =↑ ,
U := U + FU(V,U) if CU(t,V,U) =↑ . (1)

Stimulation via chemical synapse:
V := V +W if S (t) =↑, (2)

where W ∈ {· · · ,−1, 0, 1, · · ·} is a synaptic weight.

Firing:
(V,U) := (BV(V,U), BU(V,U))

if (V,U) ∈ L and CV (t,V,U) =↑, (3)

where L ⊂ ZN × ZM is a threshold set, which can be re-
garded as a firing threshold of a neuron model.

Output:

Y(t) =
{

1 if (V,U) ∈ L and CV (t,V,U) = 1,
0 otherwise. (4)

In summary, the dynamics of the asynchronous cellular au-
tomaton neuron model is described by Eqs. (1)-(4).

Remarks on the concepts of the model:

• If CV = CU , the subthreshold dynamics in Eq. (1) has
some analogies with one-step explicit numerical inte-
gration formulas such as the forward Euler method.
Hence, the asynchronous cellular automaton neuron
model can be regarded as a special kind of asyn-
chronous numerical integration (see also Table 1). In
addition, the asynchronous cellular automaton neu-
ron model can be regarded as a special kind of asyn-
chronous processor, which is designed to reproduce
typical bifurcations of neurons (see also Table 1).

• The asynchronous cellular automaton neuron model
is designed to have a much smaller resolution of the
discrete state space than the digital processor neuron
model. However, as illustrated in Fig. 1, the asyn-
chronicity of the state transitions in Eqs. (1)–(3) can
realize a smooth vector field. Conceptually speak-
ing, in order to realize a smooth vector field and a
smooth bifurcation structure, the asynchronous cellu-
lar automaton neuron model wisely utilizes the con-
tinuousness of the time axis, whereas the digital pro-
cessor neuron model straightforwardly utilizes a high
resolution discrete state space. This is the key design
concept of the asynchronous cellular automaton neu-
ron model.
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3. Hybrid dynamical system perspective of
asynchronous cellular automaton neuron model

For simplicity, let the clocks CV and CU be independent
of the states (V,U):

CV (t,V,U) = CV (t), CU(t,V,U) = CU (t).

Also, let the clocks CV (t) and CU(t) be periodic. Then,
after the phase reduction [13], the dynamics of the phases
ϕV and ϕU of the clocks CV (t) and CU(t) are described by
the following equations.

Dynamics of phases of periodic clocks:

dϕV

dt
=

2π
TV
,

dϕU

dt
=

2π
TU
,

where TV and TU are positive real numbers and are peri-
ods of the clocks CV (t) and CU(t), respectively. Then the
periodic clock are described by the following equation.

Periodic clocks:
CV (t) =↑ if ϕV (t) = 0 (mod 2π),
CU (t) =↑ if ϕU(t) = 0 (mod 2π).

(5)

Now the whole system (i.e., the asynchronous cellular au-
tomaton neuron model in Eqs. (1)-(4) and the clock gener-
ators in Eq. (5)) has the following states.

Discrete states: V ∈ ZN , U ∈ ZM ,

Continuous states: ϕV ∈ [0, 2π), ϕU ∈ [0, 2π),
Whole state space: S = ZN × ZM × [0, 2π) × [0, 2π).

For simplicity, let the firing threshold L be

L = {(V,U)|V = N − 1}.

Then, referring to Eq. (3), the asynchronous cellular au-
tomaton neuron model fires when

V = N − 1, ϕV = 0 (mod 2π).

Assuming the model continues to fire, the following
Poincare section Σ can be defined1.

Σ = {(V,U, ϕV , ϕU)|V = N − 1, ϕV = 0 (mod 2π)} ⊂ S.

Let the states U and ϕU at the n-th firing moment (i.e., the
n-th moment when the state vector (V,U, ϕV , ϕU) visits the
Poincare section Σ) be denoted by un and ϕn, respectively.
Then the dynamics of the states (un, ϕn) is described by the
following discrete-continuous hybrid return map.

(un+1, ϕn+1) = F(un, ϕn), F : Σ→ Σ.
1If the Poincare section Σ is appropriately defined in another way, this

assumption is not needed. In this case, not only spiking behaviors but also
subthreshold behaviors (e.g., resting state and subthreshold oscillation) of
the model can be analyzed by the hybrid return map in Eq. (6) [1].
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Figure 2: An example of the discrete-continuous hybrid
iterative map (F̃u, F̃ϕ) [5], which is equivalent to the map
(Fu, Fϕ) in Eq. (6).

For better understanding, rather than the above formula, let
us use the following formula.

Discrete-continuous hybrid return map:

un+1 = FU(un, ϕn), Fu : Σ→ ZM ,

ϕn+1 = Fϕ(un, ϕn), Fϕ : Σ→ [0, 2π).
(6)

Fig. 2 shows a discrete-continuous hybrid return map,
which is equivalent to that in Eq. (6).

Remarks on significances of the asynchronicity:

• If TU/TV = 1, the clocks CV (t) and CU (t) exhibit a
1:1 synchronization. This corresponds to the situation
in Fig. 1(a). In this case, the orbit (ϕ1, ϕ2, · · ·) of the
continuous state variable ϕn is restricted in a point or
a set of few points.

• If TU/TV is a rational number, the clocks CV (t) and
CU (t) exhibit an m:n synchronization. This corre-
sponds to the situation in Fig. 1(b). In this case, the
orbit (ϕ1, ϕ2, · · ·) of the continuous state variable ϕn is
restricted in a set of many points.

• If TU/TV is a irrational number, the clocks CV (t) and
CU (t) exhibit a quasi-periodic behavior. This corre-
sponds to the situation in Fig. 1(c). In this case, the
orbit (ϕ1, ϕ2, · · ·) of the continuous state variable ϕn

lies densely in a continuous subset of the set [0, 2π).

• The measure of the parameter set for the case where
TU/TV is rational or integer is zero. Hence, real elec-
tronic circuits of the clock generators should have an
irrational TU/TV .

• The discrete state variable un of the hybrid return map
F determines the position of the discrete state vector
(V,U) in its phase space ZN ×ZM and thus the discrete
state variable un determines the dominant behavior of
the asynchronous cellular automaton neuron model.
On the other hand, the continuous state variable ϕn

of the hybrid return map F exhibits a quasi-periodic
behavior for the case of the asynchronous clocks (i.e.,
for the case of the irrational TU/TV ) and then it acts as
a perturbation to the discrete state variable un. This
perturbation realizes the smoothness of the map Fu
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(a) (b)

Figure 3: (a) Multi-compartment soma-dendrite model
based on the asynchronous cellular automaton neuron
model [10]. (b) Forward propagation of action potentials
from the dendritic compartment C3 to the soma compart-
ment C0.

as shown in Fig.2 and thus realizes the smooth vector
field and the smooth bifurcation structure as illustrated
in Fig. 1.

4. Multi-Compartment Soma-Dendrite Model

Fig. 3(a) shows a multi-compartment soma-dendrite
model based on the asynchronous cellular automaton
neuron model, where C0 is a soma compartment and
{C1,C2,C3,C4} are dendritic compartments [10]. Fig. 3(b)
shows a forward propagation of action potentials from the
dendritic compartment C3 to the soma compartment C0.
Due to smoothness of the vector field of the compartments
{C0,C1,C2,C3,C4} realized by asynchronous clocks, the
hardware cost (i.e., the number of configuration block oc-
cupied in a Xilinx FPGA) of the multi-compartment soma-
dendrite model based on the asynchronous cellular automa-
ton neuron model becomes almost 1/7 compared to a multi-
compartment soma-dendrite model based on the Izhikevich
simple neuron model [14] (see [10] for detailed compar-
isons of the hardware cost).

5. Conclusions

In this paper, the hybrid dynamical system perspectives
of the asynchronous cellular automaton neuron model were
discussed. Also, the multi-compartment soma-dendrite
model based on the asynchronous cellular automaton neu-
ron model was introduced. It was shown that, due to the
asynchronicity of the clocks, the multi-compartment soma-
dendrite model can have the smooth vector field and con-
sumes less hardware resources compared to the ODE neu-
ron model. This work was supported by KAKENHI Grant
Number 20318603.
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