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Abstract—In this paper, we investigate the qualitative
behavior of the PWM current-controlled H-bridge inverter
with the periodic external forces. First, we show the circuit
model with the sinusoidal wave and a clock pulse as the pe-
riodic external forces and explain its dynamics. Then, we
define the discrete map and numerically calculate the bifur-
cation diagrams in the circuit. Finally, we discuss the qual-
itative behavior of the PWM current-controlled H-bridge
inverter.

1. Introduction

The interrupted dynamical system is dependent on the
state and periodic interval. The power conversion circuits
such as the dc/dc converter and dc/ac inverter are the typical
example of the interrupted dynamical system and these are
used in the electrical engineering field. Also, the complex
switching action causes rich nonlinear phenomena. Many
researchers have investigated these phenomena in a long
term [1–4].

There is the pulse width modulation (PWM) technique
as one of the control methods of the power conversion cir-
cuit [5, 6]. Switching of the state is determined by com-
paring the output signal of the collector and carrier sig-
nal. Further, sinusoidal wave and a clock pulse are im-
pressed the control circuit. Accordingly, the circuit with
PWM controller shows the various oscillations depending
on the carrier signal and sinusoidal wave are applied to the
collector. In general, the oscillations, which observe in the
short and long-period are called the fast-scale and slow-
scale dynamics respectively. In previous works, the rela-
tionship between the fast-scale and slow-scale dynamics
has not been discussed. So, Ref. [7] reported that fast-scale
and slow-scale dynamics interacts under certain conditions.
However, Ref. [7] discussed the fast-scale and slow-scale
dynamics in current-controlled dc/dc converter. There are
few litterateurs discussed the relationship between the fast-
scale and slow-scale dynamics of the dc/ac inverter with
the PWM controller.

In this paper, we investigate the circuit model, which is
improved circuit shown in [8, 9] with the fast-scale and
slow-scale dynamics as the first step to study qualitative
behavior in the dc/ac inverter. First, we show the circuit
model and explain its dynamics. Then, we define the dis-

crete map and numerically calculate the bifurcation dia-
grams. Finally, we investigate the qualitative behavior of
the circuit.

2. Simple H-bridge inverter

2.1. Circuit dynamics

Figure 1 shows a simple PWM current-controlled H-
bridge inverter. We set the circuit parameters as E =
400[V], R = 40[Ω], L = 20[mH] [8, 9]. The circuit model
has a PWM modulator with a proportional corrector. In
the circuit, we applied the inductance current, which is dis-
cretized every period of the clock pulse, and reference cur-
rent to the collector. Then, the reference current Ir is de-
fined as Ir = ir + A sinωt. Also, we define the variable
ω = 2π/(NTc) and fix N = 50. In particular, the case of
A=0.0 is studied in [8,9]. In the following analysis, Tc and
Ts=2π/ω are denoted the period of the clock pulse and the
sinusoidal wave, respectively. Accordingly, the corrector
outputs the control voltage un as follows:

un = k(Ir − in), k > 0, (1)

where k denotes the ratio of amplifier. Besides, the cir-
cuit consists of four switches, and we denote them as SW1,
SW2, SW3 and SW4. Now, the switching state can be
divided into two types. The switches SW1 and SW2 are
open and SW3 and SW4 are close for system-a. Also, the
switches SW1 and SW2 are close and SW3 and SW4 are
open for system-b. The circuit equations corresponding to
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Figure 1: Circuit model.
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each state are given by

L
di
dt
=















−Ri − E : system-a

−Ri + E : system-b
. (2)

We use the dimensionless value τ =Rt/(2L) in the follow-
ing analysis. Similarly, the clock pulse and sinusoidal wave
interval are T ′c = RTc/(2L) and T ′s = RTs/(2L). Then, we
rewrite T ′c and T ′s as Tc and Ts. Figure 2 shows the pro-
portional corrector and PWM modulator. The output of the
PWM modulator sat(un) is defined as follows:

sat(un) =































−1, un ≤ −1

un, −1 < un < 1

1, un ≥ 1

. (3)

Moreover, we define the duty ratio Dn, which depend on
the output of PWM controller as follows:

Dn =
1
2
+

sat(un)
2
. (4)

We show an example of the waveform in Fig. 3. Be-
havior of the waveform during the clock interval is divided
into three types depends on un. If the value of un satisfies
un ≤ −1 (or 1 ≤ un) the state of the switches during a clock
interval keeps system-a (or b). On the other hand, if the
value of un satisfies −1 < un < 1, the state of the switches
during a clock interval is shifts from system-a to b, and then
it returns to system-a. Now, during a time τa and τb, state
keeps system-a and system-b are defined as follows:

τa =
(1 − Dn)

2
Tc, τb = DnTc. (5)
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Figure 2: Proportional corrector and PWM modulator.
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Figure 3: Example of the waveform.

2.2. Discrete map

We sampled the waveform at every period of Tc and Ts

in order to define the discrete map of the circuit. Here, the
reference current is defined as Ir = ir + A sin nωt. Also, the
variable n is n = 0, 1, 2, ...,N − 1 and we let in be a solution
at the time τ = nTc. In particular, we define the solution
at the time τ = 0 and τ = NTc are ip and ip+1 respectively.
Then, the discrete map of slow-scale dynamics is defined
as follows:

ip+1 = F(ip)
= FN−1 ◦ . . . ◦ Fn ◦ . . . ◦ F1 ◦ F0(ip). (6)

In Eq. (6), Fn means the discrete map of fast-scale dynam-
ics. Figure 4 shows the conceptual diagram of the discrete
map in fast-scale dynamics. Based on the solutions of Eqs.
(2) and (5), the discrete map of fast-scale dynamics is de-
fined as follows:

Fn(in) = in+1

=



















































































ine−2Tc + 2
E
R

Tce−Tc , in ≤ C1(n)
(

e−2Tc − 2k
E
R

Tce−Tc

)

in

+2k
E
R

Tce−Tc (ir + A sin nωTc) ,

C2(n) < in < C1(n)

ine−2Tc − 2
E
R

Tce−Tc , in ≥ C2(n)

.

(7)
In Eq. (7), C1(n) and C2(n) are borders for classifying three
types of the waveform in Fig. 4, which are expressed in the
following equation.

C1(n) = ir + A sin nωTc −
1
k
,

C2(n) = ir + A sin nωTc +
1
k
.

(8)

3. Analytical results

In the following analysis, the circuit parameters are fixed
as:

k = 1.2, Ts = 15, Tc = 0.3. (9)

Figure 5 shows the one-parameter bifurcation diagram
and the corresponding Lyapunov exponent. It can be seen
from Fig. 5 that bifurcation phenomena occurs with chang-
ing the parameter ir. For example, the period-1 solution bi-
furcates to the period-2 solution around ir = 2.0. Then, the
period-2 solution bifurcates to the chaotic attractor around
ir = 4.0. After that, chaotic attractor is obtained again
through the period-3 solution. In Fig. 6, we show the
waveform and discrete map of the slow-scale dynamics as
ir = 6.4 and ir = 6.6. From these figures, we can see
the state of fast-scale and slow-scale dynamics is stable at
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(a) un ≤ −1 (b) −1 < un < 1 (c) un ≥ 1

Figure 4: Classified waveform during the clock interval Tc.

ir = 6.4. However, we consider that bifurcation phenom-
ena occurred in fast-scale dynamics makes behavior of the
slow-scale dynamics unstable. In our previous works, we
analyzed the border-collision bifurcation in interrupted cir-
cuit with fast-scale and slow-scale dynamics. In Ref. [4],
we showed that border-collision bifurcation causes fast-
scale and slow-scale dynamics to destabilized at the same
time. Therefore, we consider the same phenomenon has oc-
curred through the border-collision bifurcation around the
ir = 6.5 from Fig. 6.

If we set the parameter of amplitude A = 0.0, we can
obtain the equivalent circuit model in [8, 9]. In the follow-
ing analysis, we compare the case of amplitude A = 0.0
with A = 0.1 to discuss the qualitative behavior of the cir-
cuit. Figure 7 shows the one-parameter bifurcation diagram
of the circuit and the corresponding Lyapunov exponent
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(a) One-parameter bifurcation diagram
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(b) Lyapunov exponent

Figure 5: One-parameter bifurcation diagram and Lya-
punov exponent. (A = 0.1, Tc = 0.3)
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(a) ir = 6.4
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(b) ir = 6.6

Figure 6: Border-collision bifurcation. (A = 0.1, Tc = 0.3)

at Tc = 0.3 and A = 0.0. Moreover, we show the two-
parameter bifurcation diagrams in Fig. 8. The bifurcation
parameters are the reference value ir for the x-axis and the
period of the clock pulse Tc for the y-axis, respectively. In
Fig. 8, the area of yellow, blue and green correspond to
the existence region of the solution and the red area means
the over period-4 solution. From these figures, bifurcation
structure of the circuit is similar to the case of A = 0.0.
Here, the amplitude of reference current affects the behav-
ior of the circuit if the control voltage satisfies −1 < un < 1
(see Eq. (3)). Therefore, we conclude that if the control
voltage satisfies −1 ≥ un or 1 ≤ un, the same bifurcation
phenomena in [8, 9] occurs. On the other hand, period-3
solution bifurcates to a different period-3 solution around
ir = 6.0 in Figs. 5 and 7. Specifically in Fig. 5, the control
voltage satisfies −1 < un < 1 at the period-3 solution of
the fast-scale dynamics. Thus, the sinusoidal wave, which
is applied to the reference current affecting the behavior of
the circuit.
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(a) One-parameter bifurcation diagram

���

���

���

���

�

��

��

��

� � � � � ��

		
	


��


�

(b) Lyapunov exponent

Figure 7: One-parameter bifurcation diagram and Lya-
punov exponent. (A = 0.1, Tc = 0.3)

4. Conclusion

In this paper, we reported nonlinear phenomena in the
PWM current-controlled H-bridge inverter. First, the cir-
cuit model including sinusoidal wave of the corrector,
which produces the PWM signal was shown. Then, we
calculated the bifurcation diagrams from the discrete map.
Finally, we discussed the qualitative behavior of the circuit.
In the circuit, there are fast-scale and slow-scale dynamics
depending on the clock pulse and sinusoidal wave, which
is applied to the collector. This paper revealed the possi-
bility that slow-scale dynamics becomes unstable with the
border-collision bifurcation of the fast-scale dynamics. Im-
plementation of the circuit is the future work.
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