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Abstract–Exact synchronization of oscillators is 
important in many types of networks, e.g. power 
distribution, telecommunication, neuronal and biological 
networks. Many networks are observed to produce 
patterns of synchronized clusters, but it has been difficult 
to predict these clusters or understand the conditions 
under which they form. Here we develop techniques for 
using mathematical group theory for the analysis of 
network dynamics that shows the connection between 
network symmetries and cluster formation. We confirm 
our results experimentally. We observe a surprising 
phenomenon in which some clusters lose synchrony 
without disturbing the others. Our analysis is general in 
that such behavior will occur in a wide variety of 
networks and node dynamics. The results could lead to 
new understanding of the dynamical behavior of networks 
ranging from neural to social. 
 
1. Introduction 
 

Global complete synchronization of all identical 
oscillators (even chaotic ones) in networks has been 
studied for many years and the development of the master 
stability function [1] has facilitated the understanding of 
the stability of  the fully synchronized state even in very 
complex networks.  Recently studies of cluster 
synchronization (CS) patterns of networks of oscillators 
has shown very interesting situations where global 
synchronization does not exist, but groups (clusters) of 
synchronized nodes do – although nodes in one cluster are 
not synchronized with those in another [2-7] .  However 
these studies have often focused on networks with special 
topology or arrangements of oscillators with specifically 
set time delays in the coupling to induce cluster patterns 
of synchronization.  

We analyze the more common case where the intrinsic 
network symmetries are neither intentionally produced nor 
easily discerned. We present a comprehensive treatment of 
CS, which uses the tools of computational group theory to 
reveal the hidden symmetries of networks and predict the 
patterns of synchronization that can arise. We use 
irreducible group representations to find a block 
diagonalization of the variational equations that can 
predict the stability of the clusters. We further observe and 
explain a generic symmetry-breaking bifurcation termed 
isolated desynchronization, in which one or more clusters 

lose synchrony while the remaining clusters stay 
synchronized. The analytical results are confirmed 
through experimental measurements in a spatiotemporal 
electro-optic network. Throughout the text, we use the 
abbreviation ID for isolated desynchronization. 
 
2. Analysis of Cluster Formation from Symmetries 
 
2.1. Dynamical Equations of Motion 
 

We assume the following form of dynamics in a 
network, 

 
!xi = F(xi (t)) +! CijH(x j

j=1

N

" ),    i = 1,..., N  (1) 

where xi is the n-dimensional state vector of the ith 
oscillator, F describes the dynamics of each oscillator, C is 
a coupling matrix that describes the connectivity of the 
network, σ is the overall coupling strength and H is the 
output function of each oscillator. Equation (1) or its 
equivalent forms provide the dynamics for many networks 
of oscillators, including all those in refs [2-8].  The form 
of Eq.(1) for an iterated system can also be analyzed with 
the methods we show here.  More general forms of Eq.(1) 
are possible [9], but the analysis is essentially the same as 
here.  Our coupling matrix is chosen to be the network's 
adjacency matrix A plus a scalar multiple (β) of the N×N 
identity matrix 1N.  Other diagonal terms can also be 
treated with our methods.  For example, our approach will 
carry through with Laplacian coupling, but we want to 
avoid global synchronization here to focus on the clusters 
and we think most networks, especially natural ones will 
not be tuned to have self-coupling that perfectly cancels 
input from other oscillators in the network like a 
Laplacian weighting. 
 
2.2. Finding Symmetries in the Network Dynamics 
 

The symmetries of a network (also called the 
automorphisms [10,11] of the adjacency matrix) are those 
permutations of nodes and associated edges which leave 
the network (adjacency matrix) unchanged (invariant).  
The symmetries of the network form a (mathematical) 
group G. Each symmetry g of the group can be described 
by a permutation matrix Rg that leaves the dynamical 
equations unchanged (that is, each Rg commutes with A 
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and thus C). The set of symmetries a network can be quite 
large, even for small networks, but it can be calculated 
from C using widely available discrete algebra routines 
[12,13]. Figure 1a shows three graphs generated by 
randomly removing 5 or 7 edges from an otherwise fully 
connected 9-node network. Although the graphs appear 
similar and exhibit no obvious symmetries, the first 
instance has no symmetries (other than the identity 
permutation), while the others have 16 and 480 
symmetries, respectively. Thus, for even a moderate 
number of nodes, finding the symmetries can become 
impossible by inspection. 
 
2.3. Identifying Clusters of Synchronization 
 

Because the equations of motion (Eq.(1)) are invariant 
under the symmetry operations oscillators (nodes) related 
by symmetries will remain synchronized with each other 
if started in a synchronized state within the cluster. 
Dynamically speaking this means the cluster synchronized 
states are flow invariant in Eq.(1).  To find the clusters we 
only need find which nodes are mapped into each other.  
This is given by the orbits of the group [10] which are 
provided by the computer group computations [12,13].  If 
there are M clusters, then there are M synchronized states 
of motion s1,...,sM{ } .  All oscillators in the jth cluster 
have motion sj(t).  Let Km be the set of nodes (oscillators) 
in the mth cluster. 
 
2.4. Stability of the Cluster States 
 

The stability of the cluster states is determined by the 
solutions to the variational equations for Eq.(1).  These 
essentially give the dynamics of small perturbations to the 
synchronized states and are derived from Eq.(1).  These 
are obtained as,

 
! !xi = E (m ) " DF(sm (t))+#CijDH(sm (t))$% &'

m=1

M

()*
+

,
-
.
/!xi  

 (2) 
where the Nn-dimensional vector !x = !x

1

T ,!x
2

T ,...,!x
N

T"# $%  

and E(m)  is an N-dimensional diagonal matrix with values, 

                       Eii
(m ) =

1, if i !Km

0,  otherwise

"
#
$

%$
 (3) 

We cannot use Eq.(2) as it stands to find the stability of 
the clusters.  This is because the perturbations 
(components of δx) which are parallel to the synchronized 
states are mixed into perturbations which are transverse to 
the synchronization manifold [14] as well as we do not 
have each cluster separated from the others. In order to 
unmix the perturbations we have to perform a 
transformation T on the coupling matrix C which block 
diagonalizes it and does the separation of perturbations.  
In Ref. [14]. we outline how to set up this transformation.  
We end up with a block diagonalized matrix B=TCT–1 
which decomposes variational equations to, 

 
!! = J (m ) " DF(sm (t))+# B" In J (m ) " DH(sm (t))

m=1

M

$
m=1

M

$%
&'

(
)*

 

 (4) 
where ! = T " In#x , J (m ) = TE (m )T !1 , and B is the block 
diagonalization of C.  For more details see Ref. [14].  
Fig.1 (c) shows B for the three cases.  Note that the upper-
left block is associated with the synchronized state and 
determines the dynamics of the perturbations parallel to 
that state, i.e. they do not affect the synchronization.  
Hence, we ignore this block.  The other blocks are 
transverse to the synchronized state and  

 

 
Fig.1 Three realizations of networks generated by starting 
with a fully (all-to-all) connected network and randomly 
removing 7 edges (for the 0 symmetry case) and 5 edges 
for the 16 and 480 symmetry cases.  Part (a) shows the 
clusters in the networks discovered by using symmetry 
analysis software [12,13].  Part (b) shows the original 
coupling matrices (C) where the diagonal values are β= –
2.  Part (c) shows the block-diagonalized coupling 
matrices which are used to determine the stability of the 
cluster states shown.  Note that the 16 symmetry system 
has a transverse 2 ×2 block indicating an intertwined pair 
of clusters. The colors above the columns show which 
clusters are associated with each row and column. 
 
determine the stability of the cluster states.  The motion 
we will consider in our experiment is chaotic so we use 
Eq.(4) to calculate Lyapunov exponents for our 
experimental system.  For fixed point motion one would 
use eigenvalues and for periodic motion Floquet 
exponents or multipliers would be appropriate. 
 
3. Electro-optic Experiments 
 

Figure 2a shows the optical system used to study 
cluster synchronization. Light from a 1,550-nm light-
emitting diode passes through a polarizing beamsplitter 
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and quarter wave plate, so that it is circularly polarized 
when it reaches the spatial light modulator (SLM). The 
SLM surface imparts a programmable spatially dependent 
phase shift x between the polarization components of the 
reflected signal, which is then imaged, through the 
polarizer, onto an infrared camera [15]. The relationship 
between the phase shift x applied by the SLM and the 
normalized intensity I recorded by the camera is I(x)=(1-
cosx)/2. The resulting image is then fed back through a 
computer to control the SLM. More experimental details 
are given in the Methods section. 

The dynamical oscillators that form the network are 
realized as square patches of pixels selected from a 32×32 
tiling of the SLM array. Figure 2b shows an 
experimentally measured camera frame captured for an 
11-node random network generated by randomly deleting 
9 edges from the fully connected network (see the inset of 
Fig. 3). The phase shift of the ith region, xi, is updated 
iteratively according to: 

 

xi
t+1    = !I(xi

t ) +" CijI(x j
t ) +#

j
$%

&
'

(

)
*mod2+  (5) 

 
where β is the self feedback strength, and the offset δ is 
introduced to suppress the trivia solution xi = 0. Eq. (5) is 
a discrete time equivalent of Eq. (1). Depending on the 
values of β, σ and δ, Eq. (5) can show constant, periodic 
or chaotic dynamics. There are no experimentally-
imposed constraints on the adjacency matrix Cij , which 
makes this system an ideal platform to explore 
synchronization in complex networks.  

Fig, 3 plots the time-averaged root-mean square (RMS) 
synchronization error for all four of the nontrivial clusters 
shown in Fig. 2b, as a function of the feedback strength , 
holding σ constant. We find qualitatively similar results if 
σ is chosen as a bifurcation parameter with held constant.  

For the case of β = 0.72π the system clearly partitions 
into 4 stable synchronized clusters plus one 
unsynchronized node. At  β = 1.4 π, the magenta colored 
cluster (see Fig.3), which contains four nodes, has split 
into two smaller clusters of 2 nodes each, while the other 
two clusters remain synchronized. This illustrates two 
examples of a bifurcation commonly seen in our 
experiments and simulations isolated desynchronization, 
where one or more clusters lose stability, while all others 
remain synchronized. At β = 1.76, two clusters, shown in 
Fig. 1 as red and blue, undergo isolated desynchronization 
together. In Fig. 3a, the synchronization error curves for 
these two clusters are visually indistinguishable. The 
synchronization of these two clusters is intertwined: they 
will always either synchronize together or not at all. Each 
of the two nodes in the blue cluster is coupled to exactly 
one node in the red cluster. If the blue cluster is not 
synchronized, the red cluster cannot synchronize because 
its two nodes are receiving different input. The group 
analysis treats this automatically and yields a transverse 
2×2 similar to the case in Fig. 1 (c). 
 

 
 
FIG. 2: Experimental conguration. a) Light is reected 
from the SLM, and passes though polarization optics, so 
that the intensity of light falling on the camera is 
modulated according the phase shift introduced by the 
SLM. Coupling and feedback are implemented by a 
computer. b) An image of the SLM recorded by the 
camera in this configuration. Oscillators are shaded to 
show which cluster they belong to, and the connectivity of 
the network is indicated by superimposed gray lines. The 
phase shifts applied by the square regions are updated 
according to equation (5). 

 
Fig. 3. a) Cluster synchronization error as the self 
feedback, is varied. For all cases considered, δ = 0:525 
and σ = 0:6π. Inset shows the network with clusters 
colored to match the plots. b) Maximum Lyapunov 
exponent calculated from simulation agrees with 
synchronization pattern in the experiment. 

 
The isolated desynchronization bifurcations we observe 

are predicted by computation of the maximum Lyapunov 
exponent (MLE) of the transverse blocks of Eq. (4), 
shown in Fig. 3. The region of stability of each cluster is 
predicted by a negative MLE. There are only three MLEs: 
the two intertwined clusters are described by a 2-
dimensional block in the block-diagonalized coupling 
matrix B. These stability calculations reveal the same 
bifurcations as seen in the experiment. 

In Ref. [14] we show that the phenomenon of isolated 
desynchronization can be explained by using a group 
decomposition of the network symmetry group into a 
direct product of subgroups [16,17] each of which act 
solely on one or more clusters, but not on others.  This 
leads to the situation where one cluster can desynchronize, 
but other clusters receiving input from the desynchronized 
cluster receive only the sum of outputs from that cluster.  
Hence, symmetries of the subgroup only rearrange the 
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sum terms and each node (oscillator) of the former cluster 
still gets the same sum and their motion has flow 
invariance to a synchronized initial condition. 

In Ref. [14] we show that the techniques in this paper 
can also be applied to electric power grids so we can 
identify potential clusters that can form in those grids if 
the global synchronization of generators is lost. 

  The phenomena of symmetry-induced cluster 
synchronization and ID appear to be possible in many 
model, man-made, and natural networks, at least when 
modeled as unweighted couplings and identical systems. 
This is because our work here and that of Refs. [16,17] 
show that many types of networks can have symmetries 
and Refs.[8,18] show that many man-made and natural 
networks have dynamics similar to or reducible to Eq.(1) 
or its generalizations mentioned above. We've shown that 
ID is explained generally as a manifestation of  clusters 
and subgroup decompositions. Furthermore, 
computational group theory can greatly aid in identifying 
cluster synchronization in complex networks where 
symmetries are not obvious or far too numerous for visual 
identification. It also enables explanation of types of 
desynchronization patterns, and transformation of 
dynamic equations into more tractable forms. This leads 
to an encompassing of or overlap with other phenomena 
which are usually presented as separate. This list includes 
(1) remote synchronization [19] in which nodes not 
directly connected by edges can synchronize (this is just a 
version of cluster synchronization), (2) some types of 
chimera states [15,20] which can appear when the number 
of trivial clusters is large and the number of nontrivial 
clusters is small, but the clusters are big (see [21] for some 
simple examples), (3) partial synchronization where only 
part of the network is synchronized (shown for some 
special cases in[22]). 
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