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Abstract—Moving animal groups exhibit intriguing  When the parameters are fixed, the swarm model ex-
collective dynamics. To understand their mechanisméjbits steady collective motion. Couzin et al. showed that
mathematical models consisting of many interacting selthe same model can exhibit qualitativelyffdrent collec-
propelled particles, called swarm models, have been prtive behaviors, which are similar to those observed in natu-
posed. Statistical estimation of the parameters of thel animal groups, depending on the model parameters [4].
swarm models from observed data, in particular, fronkEstimation of the interaction parameters from observed
non-stationary data such as those observed when animsaisady motion of swarms has been performed by Mann [5].
change their group formation, is an important issue. Ihlowever, natural swarms can also exhibit unsteady mo-
this study, we propose a data assimilation method for edens such as formation changes. Estimation of time-
timating time-dependent parameters of the swarm modelarying interaction parameters from such non-stationary
We apply our method to the time series data of particle cabservation data is an unsolved, challenging problem.
ordinates obtained by numerical simulations of the swarm In this study, we propose a recursive Bayesian method
model, and show that the proposed method can estimdtg estimating time-dependent parameters of the swarm
the model parameters reasonably well even under relativatyodel from non-stationary observed data. Our method es-

strong observation noise. timates the probability density function (PDF) of the pa-
rameters at each time step and thereby enables us to track
1. Introduction changes in the parameters. We apply our method to the data

obtained by numerical simulations of the swarm model.

Various animals move in groups, such as bird flocks and
fish schools. They exhibit a wide variety of formations
and intriguing collective dynamics that an individual ani2- Swarm Model
mal cannot exhibit. It is known that individual animals in ) ) )
a group do not need to see the whole group and that sim-The swarm model consists _ON. _mteractlng self—
ple interactions with other neighboring animals can makBroloelleOI partlclgs th_at represen'_c individual mer_n_bers in the
up the group dynamics. To explain their collective dynamgroulo' Egch partlgle IS charqctenz_ed by the posmiqrand
ics, simple mathematical models consisting of many intefl® neadingv(é,) in the 2-dimensional Euclidean space,
acting self-propelled particles, called swarm models, ha\)ghe'ret = 0.1,...is the discrete timej = 1 -, N is the
been proposed [1, 2]. One of the well-known swarm mod:_)art!cle index, and ; repres.e'nts the'headlng angle pf the
els is the Boid model proposed by Reynolds in 1986 [3 particle. We update the positiong usingv(6is) according
Reynolds introduced the following three basic interactio °
rules of flocks to the model:

Xt = Xig + aV(6i 1), 1)
1. Separation: each member steers to avoid crowding of cOSb; ¢
local flockmates V(i) = ( siné., ) @)

2. Alignment: each member steers toward the averal

e . . .
heading of local flockmates %vherea is the speed of the particle. The angle.; at time

t+ 1is given by
3. Cohesion: each member steers toward the average po-

iti Vot
sition of local flockmates br = arctar( it )+7/i,t(/<t), 3)

These rules are commonly applicable to swarm models of e

various animals despite fiierences in their scales. How- where y;,(«;) is the angular noise of parameter (see
ever, to reproduce the dynamics of real animal groups, it [gq. (9)), and the angle vectoriat 1 is determined by
necessary to correctly set the parameters that characterize

the interaction properties such as their ranges and intenfi{/l’i’t+1

ait Cit St
= V(ei,t) + Wat— + Wet— + Wst—.
ICitl ISitl

a4l “)

ties. Vi te1
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H by the normal distributionV (u, 1/x) whenk is large. The
vi ( i_t) function lo(x) is the modified Bessel function of order 0.
Thus, the parameters to be estimated can be expressed as

Q = (war Wer wst 1t M2 ¢ Kt)T- (10)

‘ 3. Parameter Estimation

= In our method, we estimate the parameters of the swarm

model by using a recursive Bayesian method [7]. We use

7"1 t the state space model to describe the probabilistic relation
’ between the state variables and the observed data. The
.7-[2,t «7'[1. t PDFs of the parameters is estimated at each time step by

comparing the observed movements of the particles in the
swarm with their predicted movements by the swarm model
Fig. 1: Interaction zones of the swarm mode{; repre-  ynder observation noise. The PDFs are calculated by an al-
sents the zone where alignment and cohesion forces wajlrithm called Merging Particle Filter (MPF) [8].
and is characterized by the radiys and viewing angle:.
‘Ha; represents the zone where separation force works agdi. State Space Model

is characterized by the radiug;. ) )
We consider the case that only the coordinates of the par-

ticles can be observed with some observation noise. We

The first term on the RHS of Eq. (4) represents the inertiglenote by a vectoX; the hidden states and parameters of
and the other terms represent the interaction forces of alighe swarm, and by a vectd@; the noisy observed date,
ment, cohesion, and separation, respectively. The vectdgkthe particle coordinates as follows:
a1, Cit, ands; represent the directions of the interaction -
forces, and the weight parametess;, wpt, andwc; char- Xt = ( X1t ... Xnt Ot ... O Q@ ) ,(11)
acterize their magnitudes. , N

Each particle interacts with other neighboring particles Dy = ( Xie oo Xng ) : (12)
within the zonefs or o, shown in Fig. 1. The zone = o0y betweerD; and X; is assumed to be ex-
‘H,; represents where the separation force works, and is : : o
modeled as a circle of radiug; around the particle. The pressed by the following observation equation:

zoneHs; represents where alignment and cohesion forces Di = HX +W (13)
work, and is modeled as a circular sector of radiyshat H - 0 ' 14
does not overlap witlt,;. The parameteg; in Fig. 1 is - ( NN ) (14)

the viewing angle of the particle. The vectas, ¢, and h . . . . .
. o erel, is anx nidentity matrix and), isanx(n+7
st are calculated from the position and heading vectors (;¥ n y n ( )

. ) . . ero matrix. The vectow; represents observation noise,
other neighboring particles in the zorgg; andHy; as and is given by

T Vv(0it), 5 T
o= Qv O W= (wo owe ) W NOe, (15)
jeH;
Ci = Z (Xjt = Xit)s (6) whereoy, is the variance.
jeH, The vectorX; is updated by the system equation,
T jeZH] (e ?) X1 = F(Xt, Vb), (16)
2

The angular noisey;; represents unpredictable randomWhereV‘ is the system noise representing probabilistic as-

variations in the movement and is given by pects in th_e up_datmg process. In the present model, the
system nois&/ is expressed as

Yie ~  fumouw (X, (8) T
€k CoSk—) Vi = (Yl,t < Ynt BtT) s (17)

fumen(®) = S=75 (r<x<n), ) T
2rlo(x) B = (Bu - Bre) . Bu~NOW. (18)
where fym(,9(X) denotes the von Mises distribution [6], Here, y1:...yn; are the angular noise, ari} represents

which is a circular analog of the normal distribution. Theprobabilistic variations in the system paramet@sobey-

distribution has two parameters, i.e., the medR7 < < jng normal distributions. Thus, the system equation can be
) and the concentration(x > 0), and can be approximated
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written as

g a— T T ]
ol N | 45
X1t + V(01 t+1) c ACEAL c
. 2 N ! 2
D : \ D 3
Xnt + aV(en,Hl) g’ 55 | ' | S
F (Xt9 Vt) = f]_(Xt, '}’l,t) ) (19) \ -
. 1 1 1 1 1
40 45 30 35
fo(Xes Yno) X bosit X posit
Qt + Bt position position

(a) parallel translation (b) rotating mill
where the functiorf;(X:, i) represents the update rule of
61+1 given by Eq. (3). Fig. 2: Two types of collective motion. (a) Parallel trans-

lation. The particles move in the same direction. (b) Ro-
tating mill. The particles rotate around an empty core and
both clockwise and anti-clockwise moving particles exist
We use the MPF, which is a modification of the Partisimultaneously. Points represent particle positigpsand

cle Filter (PF) [9]. The MPF and PF are algorithms thatectors represent their headings; ;) in the X-Y plane.
estimate the PDFs of the staXg(t = 0,1, ...) from the ob-

servation dateD:(t = 0, 1,...) by the sequential Bayesian

method. These filtering methods make no restrictive ag~ Numerical Simulation

sumptions on the dynamics of the state or the density func- ) ) )
tion. The PF can preserve the shape of the filtered PDF, but'We apply our method to the time series data obtained
it does not perform well when applied to high-dimensionapy Numerical simulations of the swarm model. We gen-
systems. Although the MPF preserves only the first tw§ated time series data of the= 20 particle coordinates
moments of the PDF, it performs better than PF in highfo™ t = 0 to t = 2000 by simulating the swarm model,
dimensional systems. In this study, the dimensioxols ~Where Gaussian observation nojs€0.0,0.1) is added to
(2x N +7) and increases linearly witd. Thus, we utilized each coordinate. The particles started at random initial
the MPF to estimate the PDFs Xf. positions in a limited domainL(x L square) with ran-

3.2. Merging Particle Filter
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Fig. 3: True and estimated values of the parameters. Time-dependent parameters are showsy,ir{t(ppc; and (c)
ro:, and fixed parameters are shown in (@, (e) rys, (f) ¢ and (g)«;. The solid lines represent true values of the

parameters, the dots represent mean values of the estimated parameters, and the error bars represent standard deviations

The simulated particles exhibited parallel translation when 0< 500, and rotating mill when 1508 t < 2000. The
speed of the particles is= 0.1. The initial domain size it x L = 10x 10.
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dom orientations. As the interaction parameters were vaable [16, 17, 18].
ied, the swarm changed the type of its collective motion In this study, we proposed a method to estimate the pa-
from parallel translation (O< t < 500) to rotating mill rameters of swarm models from non-stationary noisy data.
(1500 < t < 2000). Here, parallel translation means thatWe demonstrated that the proposed method can estimate
the particles move in the same direction (Fig. 2a). Rotathe time-dependent parameters reasonably well even with
ing mill means the case that the particles rotate around aelatively strong observation noise. Though we used a rel-
empty core and both clockwise and anti-clockwise movingtively simple swarm model to verify thefectiveness of
particles exist simultaneously (Fig. 2b). the proposed method, it can also be generalized to nonlin-
We estimated three time-dependent parametgrswe:  €ar system models. We will apply the present method to
andry;, and four fixed parameterss;, r1s, ¢ and« from  more realistic model that is capable of describing real ob-
the simulated data. The results are shown in Fig. 3, wheservation data from natural animal groups.
the solid lines represent true values of the parameters, theWe acknowledge financial support from JSPS KAK-
dots represent mean values of the estimated parameteéed|HI (25540108, 26103510, and 26120513), Japan.
and the error bars represent standard deviations. All PDFs
start from uniform initial distributions &at= 0, and are up- References
dated using the observation ddia at each time step. It
can be seen that our method estimates the time-dependefif] Vicsek, T., etalPhys. Rev. Let#5(1995): 1226-1229
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rameters. The mean values of the estimated PDFs agreed
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teracted with all others. The variance of the estimated PDF[g] Kitagawa, G.JCGS5(1996): 1-25
of radiusr; increases when 508 t < 2000, because ob-
servation data has less information abgubecause of the [10] Vicsek, T., Zafeiris, A.,Phys. Rep5172012): 71-
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high-density motion. In the initial stage £ 200), the esti- 140
mation of some of the parameters is not precise because of )
the dfect of the initial distributions. [11] Couzin, ID., et aINature433 (2005) 513-516
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5. Discussion [13] Sannomiya, N., et alSCIE 3(1990): 14-20

Systems of many interacting “self-propelled” individu-P4] Sannomiya, N., Nagano, KSICE 31(1995): 1227-
als, such as birds, insects, and fish, exhibit intriguing co 1235

lective dynamics. Various collective behaviors have been

studied and many swarm models have been proposed [1[]5] Sannomiya, N., et aBICE32(1996): 948-956
For example, Couzin et al. showed that a small number o

of leaders can guide the swarm on the basis of a swark6] Ballerini, M., et al, PNAS1052008): 1232-1237
model [11, 12]. As for fish schools, Sannomiya et {;\I. e 17] Nagy, M., et aNATURE464(2010): 890-U99
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of a water tank experiment by applying the least squarg$8] Yomosa, M., et alPLOS8(2013): 81754
algorithm [13]. They also investigated the relationship be-

tween a stable steady state of the system and its parame-

ters [14, 15]. These studies focused on statistical steady

state motion. Recent advances in the global position-

ing systems (GPS) and digital image analysis have made

non-stationary observation data from natural groups avail-
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