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Abstract—Moving animal groups exhibit intriguing
collective dynamics. To understand their mechanisms,
mathematical models consisting of many interacting self-
propelled particles, called swarm models, have been pro-
posed. Statistical estimation of the parameters of the
swarm models from observed data, in particular, from
non-stationary data such as those observed when animals
change their group formation, is an important issue. In
this study, we propose a data assimilation method for es-
timating time-dependent parameters of the swarm model.
We apply our method to the time series data of particle co-
ordinates obtained by numerical simulations of the swarm
model, and show that the proposed method can estimate
the model parameters reasonably well even under relatively
strong observation noise.

1. Introduction

Various animals move in groups, such as bird flocks and
fish schools. They exhibit a wide variety of formations
and intriguing collective dynamics that an individual ani-
mal cannot exhibit. It is known that individual animals in
a group do not need to see the whole group and that sim-
ple interactions with other neighboring animals can make
up the group dynamics. To explain their collective dynam-
ics, simple mathematical models consisting of many inter-
acting self-propelled particles, called swarm models, have
been proposed [1, 2]. One of the well-known swarm mod-
els is the Boid model proposed by Reynolds in 1986 [3].
Reynolds introduced the following three basic interaction
rules of flocks to the model:

1. Separation: each member steers to avoid crowding of
local flockmates

2. Alignment: each member steers toward the average
heading of local flockmates

3. Cohesion: each member steers toward the average po-
sition of local flockmates

These rules are commonly applicable to swarm models of
various animals despite differences in their scales. How-
ever, to reproduce the dynamics of real animal groups, it is
necessary to correctly set the parameters that characterize
the interaction properties such as their ranges and intensi-
ties.

When the parameters are fixed, the swarm model ex-
hibits steady collective motion. Couzin et al. showed that
the same model can exhibit qualitatively different collec-
tive behaviors, which are similar to those observed in natu-
ral animal groups, depending on the model parameters [4].
Estimation of the interaction parameters from observed
steady motion of swarms has been performed by Mann [5].
However, natural swarms can also exhibit unsteady mo-
tions such as formation changes. Estimation of time-
varying interaction parameters from such non-stationary
observation data is an unsolved, challenging problem.

In this study, we propose a recursive Bayesian method
for estimating time-dependent parameters of the swarm
model from non-stationary observed data. Our method es-
timates the probability density function (PDF) of the pa-
rameters at each time step and thereby enables us to track
changes in the parameters. We apply our method to the data
obtained by numerical simulations of the swarm model.

2. Swarm Model

The swarm model consists ofN interacting self-
propelled particles that represent individual members in the
group. Each particle is characterized by the positionxi,t and
the headingv(θi,t) in the 2-dimensional Euclidean space,
wheret = 0,1, ... is the discrete time,i = 1, ...,N is the
particle index, andθi,t represents the heading angle of the
particle. We update the positionsxi,t usingv(θi,t) according
to

xi,t+1 = xi,t + αv(θi,t+1), (1)

v(θi,t) =

(
cosθi,t
sinθi,t

)
, (2)

whereα is the speed of the particle. The angleθi,t+1 at time
t + 1 is given by

θi,t+1 = arctan

(
v̂2,i,t+1

v̂1,i,t+1

)
+ γi,t(κt), (3)

where γi,t(κt) is the angular noise of parameterκt (see
Eq. (9)), and the angle vector att + 1 is determined by(

v̂1,i,t+1

v̂2,i,t+1

)
= v(θi,t) + ωa,t

ai,t

|ai,t |
+ ωc,t

ci,t

|ci,t |
+ ωs,t

si,t

|si,t |
. (4)
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Fig. 1: Interaction zones of the swarm model.H1,t repre-
sents the zone where alignment and cohesion forces work
and is characterized by the radiusr1,t and viewing angleϕt.
H2,t represents the zone where separation force works and
is characterized by the radiusr2,t.

The first term on the RHS of Eq. (4) represents the inertia,
and the other terms represent the interaction forces of align-
ment, cohesion, and separation, respectively. The vectors
ai,t, ci,t, andsi,t represent the directions of the interaction
forces, and the weight parametersωa,t, ωb,t, andωc,t char-
acterize their magnitudes.

Each particle interacts with other neighboring particles
within the zoneH1,t or H2,t shown in Fig. 1. The zone
H2,t represents where the separation force works, and is
modeled as a circle of radiusr2,t around the particle. The
zoneH1,t represents where alignment and cohesion forces
work, and is modeled as a circular sector of radiusr1,t that
does not overlap withH2,t. The parameterϕt in Fig. 1 is
the viewing angle of the particle. The vectorsai,t, ci,t, and
si,t are calculated from the position and heading vectors of
other neighboring particles in the zonesH1,t andH2,t as

ai,t =
∑
j∈H1

v(θ j,t), (5)

ci,t =
∑
j∈H1

(x j,t − xi,t), (6)

si,t =
∑
j∈H2

(−x j,t + xi,t). (7)

The angular noiseγi,t represents unpredictable random
variations in the movement and is given by

γi,t ∼ fVM(0,κt)(x), (8)

fVM(µ,κ)(x) =
eκ cos(x−µ)

2πI0(κ)
(−π ≤ x < π), (9)

where fVM(µ,κ)(x) denotes the von Mises distribution [6],
which is a circular analog of the normal distribution. The
distribution has two parameters, i.e., the meanµ (−π ≤ µ <
π) and the concentrationκ (κ > 0), and can be approximated

by the normal distributionN(µ, 1/κ) whenκ is large. The
function I0(κ) is the modified Bessel function of order 0.
Thus, the parameters to be estimated can be expressed as

Ω =
(
ωa,t ωc,t ωs,t r1,t r2,t ϕt κt

)T . (10)

3. Parameter Estimation

In our method, we estimate the parameters of the swarm
model by using a recursive Bayesian method [7]. We use
the state space model to describe the probabilistic relation
between the state variables and the observed data. The
PDFs of the parameters is estimated at each time step by
comparing the observed movements of the particles in the
swarm with their predicted movements by the swarm model
under observation noise. The PDFs are calculated by an al-
gorithm called Merging Particle Filter (MPF) [8].

3.1. State Space Model

We consider the case that only the coordinates of the par-
ticles can be observed with some observation noise. We
denote by a vectorXt the hidden states and parameters of
the swarm, and by a vectorDt the noisy observed datax′i,t
of the particle coordinates as follows:

Xt =
(

x1,t . . . xn,t θ1,t . . . θn,t Ω
T
t

)T
, (11)

Dt =
(

x′1,t . . . x′n,t
)T
. (12)

The relation betweenDt and Xt is assumed to be ex-
pressed by the following observation equation:

Dt = HXt +Wt, (13)

H =
(

In 0n,n+7,
)
, (14)

whereIn is an×n identity matrix and0n,n+7 is an× (n+7)
zero matrix. The vectorWt represents observation noise,
and is given by

Wt =
(

w1,t . . . wn,t

)T
, wi,t ∼ N(0, σw), (15)

whereσw is the variance.
The vectorXt is updated by the system equation,

Xt+1 = F(Xt,Vt), (16)

whereVt is the system noise representing probabilistic as-
pects in the updating process. In the present model, the
system noiseVt is expressed as

Vt =
(
γ1,t . . . γn,t Bt

T
)T
, (17)

Bt =
(
β1,t . . . β7,t

)T
, βk,t ∼ N(0, σk). (18)

Here,γ1,t . . . γn,t are the angular noise, andBt represents
probabilistic variations in the system parametersΩt obey-
ing normal distributions. Thus, the system equation can be
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written as

F(Xt,Vt) =



x1,t + αv(θ1,t+1)
...

xn,t + αv(θn,t+1)
f1(Xt, γ1,t)
...

fn(Xt, γn,t)
Ωt + Bt


, (19)

where the functionfi(Xt, γi,t) represents the update rule of
θi,t+1 given by Eq. (3).

3.2. Merging Particle Filter

We use the MPF, which is a modification of the Parti-
cle Filter (PF) [9]. The MPF and PF are algorithms that
estimate the PDFs of the stateXt(t = 0,1, ...) from the ob-
servation dataDt(t = 0,1, ...) by the sequential Bayesian
method. These filtering methods make no restrictive as-
sumptions on the dynamics of the state or the density func-
tion. The PF can preserve the shape of the filtered PDF, but
it does not perform well when applied to high-dimensional
systems. Although the MPF preserves only the first two
moments of the PDF, it performs better than PF in high-
dimensional systems. In this study, the dimension ofXt is
(2×N+7) and increases linearly withN. Thus, we utilized
the MPF to estimate the PDFs ofXt.
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Fig. 2: Two types of collective motion. (a) Parallel trans-
lation. The particles move in the same direction. (b) Ro-
tating mill. The particles rotate around an empty core and
both clockwise and anti-clockwise moving particles exist
simultaneously. Points represent particle positionsxi,t and
vectors represent their headingsv(θi,t) in the X-Y plane.

4. Numerical Simulation

We apply our method to the time series data obtained
by numerical simulations of the swarm model. We gen-
erated time series data of theN = 20 particle coordinates
from t = 0 to t = 2000 by simulating the swarm model,
where Gaussian observation noiseN(0.0, 0.1) is added to
each coordinate. The particles started at random initial
positions in a limited domain (L × L square) with ran-
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Fig. 3: True and estimated values of the parameters. Time-dependent parameters are shown in (a)ωa,t, (b) ωc,t and (c)
r2,t, and fixed parameters are shown in (d)ωs,t, (e) r1,t, (f) ϕt and (g)κt. The solid lines represent true values of the
parameters, the dots represent mean values of the estimated parameters, and the error bars represent standard deviations.
The simulated particles exhibited parallel translation when 0≤ t ≤ 500, and rotating mill when 1500≤ t ≤ 2000. The
speed of the particles isα = 0.1. The initial domain size isL × L = 10× 10.
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dom orientations. As the interaction parameters were var-
ied, the swarm changed the type of its collective motion
from parallel translation (0≤ t ≤ 500) to rotating mill
(1500 ≤ t ≤ 2000). Here, parallel translation means that
the particles move in the same direction (Fig. 2a). Rotat-
ing mill means the case that the particles rotate around an
empty core and both clockwise and anti-clockwise moving
particles exist simultaneously (Fig. 2b).

We estimated three time-dependent parametersωa,t, ωc,t

andr2,t, and four fixed parametersωs,t, r1,t, ϕt andκt from
the simulated data. The results are shown in Fig. 3, where
the solid lines represent true values of the parameters, the
dots represent mean values of the estimated parameters,
and the error bars represent standard deviations. All PDFs
start from uniform initial distributions att = 0, and are up-
dated using the observation dataDt at each time step. It
can be seen that our method estimates the time-dependent
parameters reasonably well.

The estimation of the alignment parameterωa,t was more
precise in the case of the rotating mill than in the case of
the parallel translation (Fig. 3a). This result implies that
it is more difficult to estimateωa,t in the parallel transla-
tion than in the rotating mill because the inertia term of
Eq. (4) and the direction vectorai,t point to nearly the same
directions when all particles move in the same direction.
The radiusr2 was well estimated even with relatively large
parameter variations. We also estimated the four fixed pa-
rameters. The mean values of the estimated PDFs agreed
reasonably well with the true values (Fig. 3d-3g). When
all particles gathered and exhibited high-density collective
motion (500 ≤ t ≤ 2000), the distances between every
pair of particles were smaller thanr1 and all particles in-
teracted with all others. The variance of the estimated PDF
of radiusr1 increases when 500≤ t ≤ 2000, because ob-
servation data has less information aboutr1 because of the
high-density motion. In the initial stage (t ≤ 200), the esti-
mation of some of the parameters is not precise because of
the effect of the initial distributions.

5. Discussion

Systems of many interacting “self-propelled” individu-
als, such as birds, insects, and fish, exhibit intriguing col-
lective dynamics. Various collective behaviors have been
studied and many swarm models have been proposed [10].
For example, Couzin et al. showed that a small number
of leaders can guide the swarm on the basis of a swarm
model [11, 12]. As for fish schools, Sannomiya et al. es-
timated non-measurable parameters from observation data
of a water tank experiment by applying the least squares
algorithm [13]. They also investigated the relationship be-
tween a stable steady state of the system and its parame-
ters [14, 15]. These studies focused on statistical steady
state motion. Recent advances in the global position-
ing systems (GPS) and digital image analysis have made
non-stationary observation data from natural groups avail-

able [16, 17, 18].
In this study, we proposed a method to estimate the pa-

rameters of swarm models from non-stationary noisy data.
We demonstrated that the proposed method can estimate
the time-dependent parameters reasonably well even with
relatively strong observation noise. Though we used a rel-
atively simple swarm model to verify the effectiveness of
the proposed method, it can also be generalized to nonlin-
ear system models. We will apply the present method to
more realistic model that is capable of describing real ob-
servation data from natural animal groups.
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