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Abstract– A projected edge based shape descriptor 

extended by global features is presented along with a 

related learning method. We also propose a two level 

classification method, corresponding the two distinct 

feature sets. Our experimental results show that the 

combination of independent features leads to increased 

recognition robustness and speed. The core algorithms are 

appropriate for cellular architectures and dedicated VLSI 

hardware.  

 

1. Introduction 

 

The key to efficient shape recognition is to use an 

appropriate representation that compresses all important 

characteristics of a shape into a compact descriptor. A 

shape description is considered to be efficient from a 

recognition point of view, if 

• the representation is compact 

• a metric for the comparison of the feature vectors 

can be efficiently computed 

• the representation is insensitive to minor changes 

and noise, and 

• the description is scale and rotation invariant. 

However, in case of certain shapes and tasks (e.g. 

recognition of arrows), orientation may also encode 

information, thus rotation invariance is required only up to 

a small degree, or a relative orientation to a predefined 

axes has to be detected as well. 

Description of shapes can be classified to contour-

based and region-based techniques. Each method extracts 

specific features that encompass some meaningful aspects 

of the information in the shape. Using only one feature 

thus limits the description power of the descriptor in terms 

of discriminative power and classification performance.[1] 

Combining different features include information about 

different essence of the shape and may increase 

robustness. [2][3][4] 

However, compound feature vectors may provide 

increased complexity, and require decision method that is 

able to handle differences between the parts of the 

description. 

In Section II we present our proposed compound 

description called Extended Projected Principal Shape 

Edge Distribution. In Section III a gradual classification 

method is presented including a limited nearest 

neighborhood decision. Finally in Section IV we conclude 

with future directions. 

 

2. The Extended Projected Principal Shape Edge 

Distribution 
 

We suggest a shape description that combines shape 

features in order to represent different aspects. To cover 

the most of the potential aspects optimally and avoid 

excessive redundancy, independent features are utilized.  

The descriptor consists of three parts:  

a) A general header including eccentricity and area fill 

ratio 

b) A region-based feature set with histogram moments 

c) A contour-based edge description employing 

modified Projected Principal Edge Distribution 

description for shapes 

In the following two paragraphs we briefly summarize 

the terms mentioned in points a) and b), and then we 

introduce the PPED and expound the edge descriptor in 

point c). 

 

2.1. General region-based features 

 

The first two features, eccentricity and area ratio 

represent the basic outline of the shape. The smaller the 

eccentricity is, the closer is the shape to a circle, while 

shape with eccentricity value of one is a line. The area 

ratio is the ratio of the area occupied by the shape and the 

area of the minimal rectangle covering the shape.  

Regional feature set consist of the first four moments of 

horizontal and vertical histograms of the shape (Fig. 1). 

Statistical moments are frequently used as shape 

descriptors.[1] Using more moments enables us to 

describe the shape more in details, but loose the general 

recognition ability. 

 
 

 Figure 1. Vertical and horizontal histograms of a shape 
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2.2. Contour-based features 

 

Projected Principal Edge Distribution (PPED) is a 

grayscale image descriptor that characterizes principal 

edges of the 64x64 pixel moving image window. To 

highlight important edges, for every pixel a local 

threshold is defined as the median of differences of 

neighboring pixel values. Edges are detected in four 

directions with a convolution. For every pixel location of 

the edge map only the largest edge value is kept, and 

values below the threshold are set to zero. [5]  

The base of the contour-based edge description is the 

PPED that is uses as a shape descriptor with some 

modifications. The method is shown in Fig. 2. To achieve 

scale-invariant shape analysis the shape is resized to a 

uniform 64x64 pixel, preserving the original aspect ratio. 

Out measurements in previous works showed that resizing 

to bigger size is unnecessary. The differences between 

neighboring pixel gray-values in a binary image are 0 or 1 

(pixel value 1 for in-shape pixels and 0 for others), 

consequently the median value is also 0 or 1. We 

experimented with different threshold values, and we 

concluded that the best results can be achieved by using a 

threshold value of 2. 

 

 
 

Figure 2. Construction of the contour-based part of the 

description. Edges are detected in four directions, then 

thresholding and maxima selection is applied, finally 

projections are concatenated and normalized. 

 

A major deficiency of the PPED is that it is not 

invariant with respect to rotation. To achieve rotation 

invariance we chose to detect a characteristic angle and 

normalize the shape angularly. The orientation of the 

shape (defined as the orientation of the ellipse having the 

same second moment) serves well as a characteristic 

angle, since it is consistent in the sense that orientation 

values of similar shapes are close to each other. 

(Mathematical orientation may significantly deviate from 

the orientation value estimated by a human observer.)  

Orientation provides invariance up to rotation by k*π, 

resulting in two distinct possibilities. To make the rotation 

unambiguous, shape is rotated with π if the mass center of 

the shape is located on the right side. 

 

3. Classification 

 

To demonstrate the effectiveness of the proposed 

description, we tested it in a shape classification task. 

Nearest neighborhood classifiers are typical when using 

PPED type descriptors.  

The drawback of the nearest neighborhood method is 

that it might be slow (due to many comparisons), 

representation set scales poorly, and there is no option to 

classify an input as not belonging to any class. 

Furthermore, the EPPSED as a compound descriptor 

enables us a special comparison method, since the parts of 

the vector represents different features. Compound 

classifiers are frequently used techniques to handle 

separate parts, but generally they do not exploit the 

meaning of each part of the vector. 

We suggest a gradual classification scheme. Shape 

classification is performed by comparison of the 

descriptor to labeled points in the feature space denoted as 

templates. The set of templates used for comparison is 

denoted as representative set. First global and statistical 

features are compared, then, if a satisfactory match is 

achieved, the final decision is computed from the 

differences between the contour features. 

 

3.1. Filtering 

 

The first phase of the decision selects candidates for the 

second phase of the decision and rejects obviously 

dissimilar template vectors. For every feature vector 

element a threshold is determined. An input descriptor 

matches the labeled template vector if the number of 

elements with difference higher than the threshold is 

within certain limit. Threshold and limit is based on 

preliminary measures. 

 

3.2. Limited nearest neighborhood 

 

The second phase of the classification employs limited 

nearest neighborhood decision to define the final class. 

The disadvantage of the nearest neighborhood decision is 

its inability to reject distant inputs that do not belong to 

any class (denoted as zero-class elements). Without 

specifying additional constraints there is always a nearest 

element to every input vector, even if the distance is high. 

We propose a method that selects the nearest template in 

the Euclidean space, but it is accepted only if the distance 

is smaller than the minimal acceptance threshold of the 

template. 
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Figure 3. Automatic definition of minimal acceptance 

range. C1 and C2 represent two in-class elements, C0 a 

zero-class element. Acceptance threshold for C1 will be d0 

as the half of the distance to the closest zero-class 

element. Acceptance threshold for C2 will be a2 as the 

distance to the closest element of another class. 

 

To determine the minimal acceptance threshold we 

used an automatic generation algorithm. We employed a 

shape database as a train set consisting of various shapes 

consisting also elements that do not belong to any class. 

The acceptance threshold for a template is determined 

based on the other elements that match the template by the 

filtering described above. We have set the threshold to be 

half of the distance to the nearest zero-class element. In 

case of the absence of any zero-class elements, the 

distance to the nearest element labeled with different class 

is used as the acceptance threshold. If no element with a 

different class label is in the filter range, the acceptance 

threshold is set as the distance to the farthest element 

within the same class. 

 

3.2. Experimental results 

 

 We tested the descriptor and the classification method 

on a shape set extracted from Hungarian Forint banknotes 

in the Bionic Eyeglass Project. [6] Table 1. and Table 2. 

summarize the results. 

The two shape datasets contain 6172 and 7024 shapes 

images respectively, including negative elements that do 

not belong to any class. The representative set had 271 

elements. 

Shapes in the test sets represent characteristic graphical 

patches (portraits, drawings) extracted from banknotes, 

but also shadows, joined patterns and other patches from 

the background. Nonzero-class shapes represented 9 

classes with high variation due to morphologic extraction. 

Input images are shown on Figure 4. 

 Global accuracy is the ratio of correctly recognized 

shapes including zero-class inputs. Cover corresponds for 

the ratio of correctly identified and all nonzero-class 

inputs. Precision is the ratio of correctly classified 

nonzero-class inputs and all classified nonzero inputs. 

Average lookup time was measured on a standard 

computer (Core2 Quad CPU @ 2.66 GHz, 3 GB 

memory). 

 
Global 

accuracy 
Cover Prec. 

Av.lu. 

time (ms) 

W/out 

Filters 
84,4% 45% 98,3% 57,2 

With 

Filters 
88,5% 58,3% 99,4% 6,4 

Table 1. Experimental results of test set 1. 

 

 
Global 

accuracy 
Cover Prec. 

Av.lu. 

time (ms) 

W/out 

Filters 
88,5% 46% 99,6% 58,0 

With 

Filters 
91,5% 60,1% 99,7% 6,4 

Table 2. Experimental results of test set 2. 

 

 

 
 

Figure 4. Fragment on the test sets. In the row a) are zero-

class shapes, rows b)-d) show nonzero-class shapes. 

 

4. Conclusion 

 

 We presented a new shape description and 

classification method. Key characteristics of our approach 

are the compound descriptor and classifier that join the 

region and contour-based features. 

 Results show high precision and lower cover. The 

reason to have lower cover is that the test sets consist of 

also highly deformed shapes, which were classified as 

non-zero elements. 

 The computation time allows real-time recognition on 

standard CPUs, and the architecture core of the algorithm 

is appropriate on cellular architectures. In the future our 

plan is to implement the descriptor on CNN 

architecture.[7] 
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