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Abstract—In this paper, we discuss pattern formation
of objects generated by distributed autonomous agents ca-
pable of loading and unloading the objects. This work was
inspired by social behavior of termite colonies which often
build elaborate three-dimensional structures (nest towers).
This paper challenges to clarify the mechanism of this ex-
cellent building ability of termite-like agents, by computa-
tional and minimalistic approach. We introduce a cellular
automata (i.e., spatially discretized) model for the agents
and objects, where each agent follows a simple ’rule’ to
choose its action from move/load/unload based on the state
of its neighboring cells. An advantage of this approach is
that each rule can be encoded as an integer, so that we can
enumerate all the combinations of possible rules. After ex-
amining all the rules, we propose to evaluate and classify
the resulting object patterns quantitatively, using a couple
of statistical indices in image processing, Kolmogorov di-
mension and HLAC. Finally, some extensions to pattern
formation in three-dimensional space are also presented.

1. Introduction

Quantity may overwhelm quality. A large number of
tiny agents often outperform single smart agent, if they are
appropriately organized. Social insects such as ants, bees
or termites, which have physically tiny brains with limited
memory and deduction capacity, often construct huge com-
plicated structures (nest towers) [1][2]. In this study, we
aim at understanding the mechanism behind these appar-
ently intellectual behavior of swarms. In particular, we will
focus our attention on object pattern formation generated
by autonomous transporting agents.

The authors have proposed a basic model of object stack-
ing by simple loading/unloading agents evolving in the
vertical plane [3], based on cellular automata (spatial dis-
cretization) approach [4, 5]. This paper extends this result
to the pattern formation evolving on the horizontal plane
followed by quantitative statistic analyses. First, we de-
fine fundamental event rules in the 2-dimensional cellular
world, and introduce a robot, and an object as in our pre-
vious work. In order to search the possibility of forming
a wide variety of structure by simple agents with ”min-
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Figure 1: Overview of the horizontal cellular space

imum” ability; carrying an object and perceiving a local
information. Since the searching range is limited in the
cellular world, we can demonstrate the formed patterns for
all possible combinations. After examining all the rules,
we quantitatively classify the resulting object patterns us-
ing a couple of statistical indices in image processing: one
is the Kolmogorov dimension to characterize the pattern
complexity, while the other is the Higher Order Local Au-
tocorrelation (HLAC) to characterize the pattern similar-
ity. Finally, we expand the pattern formation in three-
dimensional space.

2. Cellular modeling of 2-D transporting agents

In this section, we begin with defining the primitive
events occurying in this 2-dimensional cellular field, and
introduce robots’ action rules based on perception of neigh-
boring cells. We suppose tessellation of the 2-dimensional
Euclidean space with unit squares, as shown in Figure 1.
Each robot or each block (Fig. 2) is placed in a cell. A
block does not move autonomously. A robot would be ei-
ther empty or full (carrying a block inside it).

In each ’tick’ of discrete event, a robot takes one of four
primitive actions, identified with the integers from 0 to 3,
listed below:
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(a)
Robot(empty)

(b) Block (c)
Robot(full)

Figure 2: Agents and blocks

Table 1: Code252: indicates the action rules based on local
configurations respectively

(6) (5) (4) (3) (2) (1)
Load Unload Unload Load Unload Move

1 0 0 1 0 0

Primitive actions of a robot:

0：Unload Put down the carrying block and step back-
ward.　

1：Load Pick up the object in front of it and step forward.
　

2：Move Step forward. 　
3：Turn Rotate 90 degree to the right or to the left ran-

domly (i.e., following the uniform probabilistic distri-
bution).

The first three actions, namely 0:unload, 1:load and
2:move, may be infeasible depending on the circumstance
of the robot in concern; e.g., a robot cannot move into a
non-empty cell. In such a case, 3:Turn will be chosen in-
stead.

Then, let us turn to define an agent’s perception region.
The perception region is the set of 5 cells in front of an

(a) step (b) half-step1 (c) half-step2

(d) concave (e) flat (f) convex

Figure 3: Possible patterns of neighboring blocks

agent. By eliminating the configurations which are equiv-
alent by the symmetry of the robot, the number of patterns
are reduced to 6 patterns (Fig. 3).

If the front cell is empty, a robot tries to choose randomly
move or turn. Otherwise, a robot tries to select from 3 ac-
tion rules: unload, load, or turn. By selecting from 3 action
rules for 6 local configurations respectively (Fig. 3(1)-(6)),
all combinations are calculated as 36 = 729. In this pa-
per, a combination of action rules for local configurations
is identified with “Code”. Code is supposed to count based
on ternary to decimal conversion. For example, if a robot
is supposed to select a combination as Table 1, this action
rule is treated as 100100 in base-3 numeral system. By
converting to base-10 numeral system, Table 1 is expressed
as Code 252.

3. Analysis of 2-D pattern formation

Suppose a field is occupied by 100 × 100 = 10000
cells. 2000 objects are randomly distributed within a square
region surrounded by (10, 10), (90, 10), (90, 90), (10, 90).
1000 robots are also placed at 1000 empty cells, and multi-
ple robots are supposed to never occupy in a single cell. A
robot tries to select turn at boundary condition. Numerical
simulations are carried out for 729 possible combinations.

Table 2: Relations between formed pattern and feature values (DK and HLAC)

Code 252 [100100] 199 [021101] 305 [102022] 41 [001112]
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Dk 1.578 1.642 1.687 1.782
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Figure 4: Invariance of parallel shift by integration

4 typical formed patterns are expressed in Table 2. It seems
that different types of clusters are formed by different ac-
tion selects for local curvatures.

3.1. Evaluation: Kolmogorov dimension

In order to measure ’complexity’ of resulting clusters,
we propose to classify the results using Kolmogorov dimen-
sion [6]. Suppose a number N(ε) is treated as the smallest
number in order to cover a set X ∈ Rd by a set of convex
(sphere, cube) whose diameter is ε. Here, Kolmogorov di-
mension is defined as

Dk = lim
ε→0

log N(ε)

log
(

1
ε

) (1)

where log N(ε) is treated as an entropy on a matric space.
Thus, Kolmogorov dimension tries to express the pattern
complication as a degree of information entropy. Table 2
indicates the results based on Kolmogorov dimensions. It
can be verified that complication of formed patterns are ex-
pressed quantitatively.

3.2. Evaluation: HLAC

Let us turn to evaluate the resulting patterns quantita-
tively, with an index called HLAC (higher order local auto-
correlation) [7][8]. Suppose an image plane is denoted by
P. Images on P are expressed by functions f (r) ≥ 0 de-
fined within P, where r ∈ P. Suppose x denote a feature of
the image f (r) extracted over P. The m th-order autocorre-
lation functions with m displacements a1, ..., am are defined
by

x =
∫

P
f (r) f (r + a1) · · · f (r + am)dr (2)

Since the number of these autocorrelation functions ob-
tained by the combination of the displacements over the
image f is enormous, we try to reduce them for practi-
cal application. Then, we consider the order m up to the
eighth (m = 0, 1, ..., 8). We also limit the range of dis-
placements to within a local 3 × 3 cell, and the center of 9
cells is treated as the reference point. By eliminating the
equivalent displacements, the number of the patterns of the
displacements is reduced to 223.
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(a) A robot (b) A block
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(c) A robot carrying a
block

Figure 5: Objects in the three dimensional space

(a) Unload (b) Load

(i)	


(ii)	


(iii)	


(c) Move

Figure 6: The robot is capable of doing these actions in the
three dimensional space.

Table 2 indicates the results classified based on HLAC. It
seems that the difference of cluster patterns are effectively
expressed by ID number of mask pattern.

4. Extention to 3-D pattern formation

Let us turn to extend object pattern formation in 3-
dimentional space. As we have mentioned in 2-dimentional
space, each cell is supposed to be empty or occupied by a
robot, a block, or a robot carrying a block (Fig. 5). If an
object (a robot or a block) is on an empty cell, every object
drops one cell in every step. A robot is supposed to have
its orientation as shown in Fig. 5(a) and move based on 5
action rules as follows:
Primitive action of a robot:

0: Unload Put down the carrying block and climb on top
of it.　

1: Load Pick up the block underneath the robot. 　
2: Move Step forward. 　
3: Turn Rotate 90 degree horizontally randomly.
4: Cling Rotate 90 degree in a random direction staying

on a block or a robot

Fig. 7 indicates the procedure of action rules. First, a
robot tries to select from 3 action rules: unload, load, or
turn. Second, a robot changes its action rule to turn. Third,
a robot selects cling. Finally, a robot drops one cell.
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Figure 7: The procedure of selecting action rules

Figure 8: Structure formation based on code 254

Suppose the field is occupied by 50 × 50 × 50 = 12500
cells. 3000 objects are randomly distributed within a square
region surrounded by (2, 48), (48, 2), (48, 48), (2, 2). 200
robots are also placed on objects, and multiple robots can
never occupy in a single cell. Fig. 8 shows the simula-
tion result based on Code 254. It seems that robots with
Code 254 tries to form some quadrangular pyramids. On
the other hand, it can be verified that the structures are on
the way to form complete quadrangular pyramids.

Let Code 254 be treated as a visually based (directed
graph) representation of parallel programs as shown in
Fig. 9(a), (1) step structure is verified to be an equilibrium
state. Thus, stable step structures leads to form multiple
quadrangular pyramids. If we try to form one large quad-
rangular pyramid, we need to feed a disturbance to (1) step
structure as shown in Fig. 9(b). Fig. 10 shows the simula-
tion result with disturbance. It seems that one large quad-
rangular pyramid is formed.

5. Conclusions with future works

In this paper, we examined pattern formations of objects
by autonomous transporting agents by cellular automata
approach. After demonstrating some pattern formations
by simulations, we evaluated the complexity of the several
patterns based on Kolmogorov dimension and HLAC. In
addition, we expanded pattern formations in 3-dimensional
space. There remains several issues to be discussed in the
future works: (a) mathematical analysis of stability of pat-
terns, and (b) its application to design engineering.
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Figure 9: State transition graph in 3 example Codes

Figure 10: Four pyramid structure formation in the three
dimensional space
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