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Abstract– We propose a new method for the recovery 
of delay time from time series of time-delay systems based 
on the nearest neighbour analysis. The method allows one 
to reconstruct delays in time-delay systems described by 
the first- and second-order delay-differential equations. It 
can be applied to time series heavily corrupted by additive 
and dynamical noise. 
 
1. Introduction 
 

Self-sustained oscillators with delay-induced dynamics 
are highly widespread in nature. Their abundance results 
from such fundamental features as the finite velocity of 
signal propagation that is especially displayed in spatially 
extended systems [1] and time-delayed feedback inherent 
in many physical [2,3], chemical [4], climatic [5], and 
biological [6] systems and processes. Studying time-delay 
systems it is important to know the delay times whose 
values in many respects define the system dynamics and 
features. Knowledge of delay times is of considerable 
significance in model construction and prediction of 
system behaviour in time and under parameter variation. 
That is why the problem of delay time reconstruction from 
experimental time series attracts a lot of attention. 

To solve this problem a variety of methods has been 
proposed, which allows one to recover the delay times of 
time-delayed feedback systems from their chaotic time 
series. Many of these methods are based on the projection 
of the infinite-dimensional phase space of time-delay 
systems onto low-dimensional subspaces [7–9]. They use 
different criteria of quality for the system reconstruction, 
for example, the minimal forecast error of the constructed 
model [7], minimal value of information entropy [8], or 
various measures of complexity of the projected time 
series [9]. The methods of delay time recovery are known 
based on employment of regression analysis [10], 
statistical analysis of time intervals between extrema in 
the time series [11], information-theory approaches [12], 
multiple shooting approach [13], optimization algorithm 
[14], and adaptive synchronization [15]. A separate group 
of methods for delay time estimation is based on the 
analysis of the time-delay system response to external 
perturbations [16]. These methods can be applied to 
systems performing not only chaotic, but also periodic 
oscillations. 

In this paper we propose a novel method for recovering 
delay time from time series. It is based on the nearest 
neighbour method. The method of nearest neighbours is 
widely used in different scientific disciplines for nonlinear 
time series analysis [17]. Its main areas of application are 
classification of objects and forecast of time series. In the 
object classification problem the basic idea of the nearest 
neighbour method is that the object is assigned to the class 
of its nearest neighbour or to the class most common 
amongst its k nearest neighbours. In application to the 
forecast of a time series the method idea is to use for 
prediction of a future state of a system its states in the past, 
which are most similar to the current state. We propose 
using the nearest neighbour method for the first time for 
estimating the delay time of a delayed feedback system 
from time series. 

The paper is organized as follows. In Section 2 we 
present the idea of the method and apply it to recover 
first-order time-delay systems with a single delay in 
chaotic and periodic regimes. In Sections 3 the method is 
applied for the reconstruction of delays in scalar time-
delay systems of second order. In Section 4 we summarize 
our results. 
 
2. Recovery of delay time in first-order time-delay 
systems  
 

Let us explain the method idea with one of the most 
popular first-order delay-differential equation with a 
single delay: 

               ( )( ) ( ) ( )x t x t f x tε τ= − + −& ,                (1) 
where τ is the delay time, the parameter ε characterizes 
the inertial properties of the system, and f is a nonlinear 
function. Note that the Mackey-Glass equation [6] and the 
Ikeda equation [1], which became standard equations in 
the study of time-delay systems, can be reduced to Eq. (1). 

Analyzing time series, we always deal with variables 
measured at discrete instants of time. Therefore, it is 
convenient to pass from differential Eq. (1) to the 
difference equation 

   ( )( ) ( ) ( ) ( )x t t x t x t f x t
t

ε τ+ Δ −
= − + −

Δ
,      (2) 

where Δt is the sampling time. Equation (2) can be 
rewritten as 
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( )1 2( ) ( ) ( )x t t a x t a f x t τ+ Δ = + − ,        (3) 
where 1 1a t ε= − Δ  and 2a t ε= Δ . Let us write Eq. (3) in 
the form of the discrete-time map 

1 1 2 ( )n n n dx a x a f x+ −= + ,                   (4) 
where n t t= Δ  is the discrete time and d tτ= Δ  is the 
discrete delay time. 

Assume that we have a time series 1{ }N
n nx =  from the 

system (1), where N is the number of points. Let us define 
vector ( , )i i i dX x x −=

r
 and find vector ( , )j j j dX x x −=

r
 

with j i≠ , which is a nearest neighbour of iX
r

. The 
nearest neighbour for a given vector can be chosen 
according to some metrics. The most widely used metrics 
is the Euclidean metrics 

( ) ( ) ( )2 2
,i j i j i d j dL X X x x x x− −= − + −

r r
.   (5) 

The vector jX
r

 will be the nearest neighbour of iX
r

, if 

the distance ( ),i jL X X
r r

 is minimal. Generally, it is a 

common practice to find not one, but k nearest neighbours 
for a given vector.  

The basic idea of the proposed method is that the 
nearest neighbour vectors containing the system (4) 
dynamical variable at the instants of time n and n d− , 
where [ ]1, 1n d N∈ + − , will lead to the close states of the 
system at the instants of time 1n + , because the system 
(4) evolution is defined by its current state and the state at 
the delayed instant of time. Since the delay time is a priori 
unknown, we vary the trial delay times m within some 
interval and for k nearest neighbours of each vector 

( , )n n n mX x x −=
r

 constructed from the time series estimate 
the variance 2

nσ  of the system states at the corresponding 
instants of time 1n + . 

In the case of false choice of m ( m d≠ ), the variance 
of these states may be great, because the system states at 
the instants of time 1n +  do not depend on the system 
states at the instants of time n m− . True delay time d can 
be estimated as the value at which the minimum of the 
following dependence: 

1
2

1

1( )
2

N

n
n m

D m
N m

σ
−

= +

=
− − ∑                     (6) 

is observed. 
We apply the method to time series of the Mackey-

Glass equation 
( )( ) ( )

1 ( )c

ax tx t bx t
x t

τ
τ

−
= − +

+ −
& ,                   (7) 

which can be converted to Eq. (1) by division by b. The 
parameters of Eq. (7) are chosen to be 0.2a = , 0.1b = , 

10c = , and 300τ =  to produce a dynamics on a chaotic 
attractor. The sampling time is 1tΔ =  and the number of 
points is 10000N = . Part of the time series is shown in 
Fig. 1(a). 

 

 
Fig. 1. (a) The time series of the Mackey-Glass equation 
in the chaotic regime. (b) Dependences of D on the trial 
delay time m for different numbers k of nearest 
neighbours. (c) Dependences D(m) for different numbers l 
of close in time vectors excluded from consideration. 
 

Figure 1(b) depicts the dependence of D on the trial 
delay time m for different numbers k of nearest 
neighbours for vector ( , )n n n mX x x −=

r
. The value of m is 

varied from 1 to 500 with a step of 1. All the dependences 
D(m) exhibit a well-pronounced absolute minimum at 

300m = , which provides an accurate recovery of the 
discrete delay time 300d tτ= Δ = . 

If the time series points are sampled with a high 
frequency, a situation is possible in which the vectors 

( , )j j j dX x x −=
r

 with j i p= ±  ( 1, 2,p P= K ) that are 

close in time to vector ( , )i i i dX x x −=
r

 will be detected as 
its nearest neighbours. To avoid this undesirable situation 
in the search for the nearest neighbours of vector 

( , )i i i dX x x −=
r

, one should exclude from consideration 

2l P=  vectors ( , )j j j dX x x −=
r

 close to iX
r

 in time.  
The dependences D(m) are plotted in Fig. 1(c) for 

10k =  and different numbers l of close in time vectors, 
which are not taken into account in searching for nearest 
neighbours. All the plots exhibit a sharp absolute 
minimum at 300m d= = , as well as the plots in Fig. 1(b). 

It should be noted that instead of searching for a fixed 
number k of nearest neighbours for vector ( , )i i i dX x x −=

r
, 

one can assign all vectors ( , )j j j dX x x −=
r

 to its nearest 

neighbours, if ( ),i jL X X δ<
r r

, where δ is a small quantity. 

The plots of D(m) constructed in this way of finding 
nearest neighbour vectors are similar to the plots 
presented in Fig. 1(b). The appropriate choice of the 
parameters k and δ enables one to achieve almost 
complete coincidence of the results of searching for 
nearest neighbours in both ways. In addition, we have 
found that the choice of the metrics for searching nearest 
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neighbours has almost no effect on the form of the 
dependences D(m). 

To test the method efficiency in the presence of noise 
we apply it to the data produced by adding a zero-mean 
Gaussian white noise to the time series of Eq. (7). The 
obtained results are presented in Fig. 2(a) for different 
levels of additive noise at 10k =  and 10l = . The location 
of the minimum of D(m) allows us to recover the delay 
time accurately even for noise level of about 30% (the 
signal-to-noise ratio is about 10 dB). Such level of noise 
greatly exceeds the noise level that is allowed for applying 
most of other methods of delay time reconstruction. 

 

 
Fig. 2. Dependences D(m) for the Mackey-Glass 

system in the chaotic regime for different levels of 
additive noise (a) and dynamical noise (b). The levels of 
noise are indicated in % near the corresponding curves. 

 
The proposed method is even more robust with respect 

to the dynamical noise. In Fig. 2(b) the dependences D(m) 
are shown at 10k =  and 10l =  for the case, where a zero-
mean Gaussian white noise is added to the right-hand side 
of Eq. (7). In all the plots constructed in Fig. 2(b) for 
different levels of noise the minimum of D(m) is observed 
at 300m = .  
 
3. Recovery of delay time in second-order time-delay 
systems 
 

The proposed method can be easily extended to high-
order time-delay systems. In particular, it can be modified 
for the systems described by the second-order delay-
differential equations 

( )2 1( ) ( ) ( ), ( )x t x t F x t x tε ε τ+ = −&& & ,    (8) 
where ε1  and ε 2  are the parameters characterizing the 
inertial properties of the system. As an example we 
consider the following system: 

( )2 1( ) ( ) ( ) ( )x t x t x t f x tε ε τ+ = − + −&& & .            (9) 
Using the described above formalism, one can pass 

from differential Eq. (11) to the discrete-time map 
2 1 1 2 3 ( )n n n n dx b x b x b f x+ + −= + + ,             (10) 

where ( )1 1 22b tε ε= − Δ , ( )( )2
2 1 21b t tε ε= − + Δ − Δ , 

and ( )2
3 2b t ε= Δ . 

For each vector 1( , , )n n n n mX x x x+ −=
r

 constructed from 
Eq. (9) time series we find k nearest neighbour vectors 
and estimate for them the variance 2

nσ  of the system states 

at the corresponding instants of time 2n + . Then we 
calculate the dependence 

2
2

1

1( )
3

N

n
n m

D m
N m

σ
−

= +

=
− − ∑                    (11) 

under variation of the trial delay time m. The location of 
the minimum of (11) will give us an estimation of the 
discrete delay time d tτ= Δ .  

The proposed methods can be used for determining an a 
priori unknown order of a delayed feedback system from 
its time series. To define the order of the time-delay 
system one has to recover initially its delay time under the 
assumption that the system is described by the first-order 
Eq. (1). Then, one has to recover the delay time under the 
assumption that the system model equation is the second-
order Eq. (11) and construct the dependences (6) and (11) 
in the same plot. The dependence D(m) constructed under 
the true choice of the model equation order will lie below 
the dependence D(m) constructed under the false choice of 
the order of the model equation. 

For example, let us have a time series from the second-
order time-delay system (9) with quadratic nonlinear 
function 2( )f x xλ= − , where λ is the parameter of 
nonlinearity. The system parameters 1000τ = , 1.9λ = , 

1 7ε = , and 2 10ε =  correspond to chaotic oscillations. 
The sampling time is 1tΔ =  and the number of points is 

10000N = . Part of the time series is shown in Fig. 3(a) 
for the case, where a 10% dynamical noise is added into 
the system. Let us suppose that the order of the system 
model equation is unknown and first recover the delay 
time under the assumption that the system is governed by 
the first-order Eq. (1). The dependence (6) is depicted in 
Fig. 3(b) in black colour for 10k =  and 10l = . It has a 
minimum at 1001m =  that is slightly larger than the delay 
time 1000d tτ= Δ = . 

 

 
Fig. 3. (a) The time series of Eq. (9) with quadratic 
nonlinearity in the chaotic regime. (b) Dependences D(m) 
constructed under the assumption that the model equation 
is of the first order (black colour) and the second order 
(grey colour). 

 
Let us reconstruct now the delay time assuming that the 

system is described by the second-order delay-differential 
Eq. (19). The dependence (11) is shown in Fig. 3(b) in 
grey colour for 10k =  and 10l = . It lies below the 
dependence (6) indicating that the second-order equation 
describes the system better than the first-order equation. 
The minimum of dependence (11) is observed at 
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m=d=1000. Thus, the delay time is recovered accurately at 
the true choice of the model equation order.  

Then we consider the case, where a time series is 
gained from the first-order time-delay system (1) with 
quadratic nonlinear function and parameters 1000τ = , 

1.9λ = , and 10ε =  corresponding to chaotic oscillations. 
As well as in the considered above example, 1tΔ = , 

10000N = , and a 10% dynamical noise is added into the 
system. 

The plot of D(m) constructed under the assumption that 
the model equation has the form of Eq. (1) exhibits 
minimum at 1000m d= = . This plot is depicted in Fig. 4 
in black colour for 10k =  and 10l = . The dependence 
D(m) constructed under the assumption that the model 
equation has the form of Eq. (9) is shown in Fig. 4 in grey 
colour. It has a minimum at 999m =  and lies mainly 
higher than the black curve indicating that the model 
equation of the system has the first order. 

 

 
Fig. 4. Dependences D(m) constructed from time series of 
Eq. (1) with quadratic nonlinearity under the assumption 
that the model equation is of the first order (black colour) 
and the second order (grey colour). 
 
4. Conclusion 

We have proposed the method for the reconstruction of 
delay time in time-delay systems from their time series. 
The method is based on the nearest neighbour analysis. It 
allows one to recover the delay times in scalar time-delay 
systems of different order. The method can be applied to 
time-delay systems with arbitrary form of nonlinear 
function. Moreover, the method can be used for 
determining an a priori unknown order of a time-delay 
system from its time series. The parameters of the method 
can be chosen within a wide range. The proposed method 
remains efficient under very high levels of dynamical and 
additive noise.  
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