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Abstract—The present paper considers a feedback
control method for suppressing spirals and spatiotem-
poral chaos in a two-dimensional excitable medium.
This method uniformly applies small impulsive ex-
ternal forces to the medium with feedback based on
real-time rough information on the medium. It is nu-
merically shown that the control performance of this
method does not decline even if the medium has a pa-
rameter uncertainty.

1. Introduction

Nonlinear phenomena in excitable media, such as
propagating waves, spirals, and spatiotemporal chaos,
have been analytically and experimentally investigated
for many years. In recent years, there has been some
interest in control of such phenomena as follows: un-
stable propagating waves in a photosensitive Belousov-
Zhabotinsky reaction are experimentally stabilized by
a feedback light-intensity control [1]; the spirals and
the spatiotemporal chaos in excitable media, known
as a cause for irregular heartbeat, are suppressed by
various control methods [2].

These methods for suppression can be classified into
two categories: nonfeedback control and feedback con-
trol. Most studies on suppression employ the nonfeed-
back control (e.g., see Refs. [3, 4, 5, 6]) due to sim-
plicity of control structure. By contrast, even though
the feedback control has been widely used for industrial
applications in the field of control engineering, only a
few feedback control methods have been used for the
suppression [7, 8, 9, 10, 11, 12]. It is well accepted in
the field of control theory that the control performance
with feedback does not decline even if the controlled
objects have some uncertainty; that is, the feedback
control methods are generally robust over uncertainty
of controlled objects, while the nonfeedback is not.

Yoneshima et al. proposed a feedback control
method for suppressing spirals in a cellular automata
[13]. This feedback control system is described by
a cellular automaton (i.e., discrete time, value, and
space systems); thus, its behavior can be easily demon-
strated on computer simulations because of unneces-

sity of numerical integration. On the other hand, it is
difficult to deal analytically with such behavior, since
popular mathematical tools for analyzing nonlinear
dynamics are generally meant for partial differential
equations (i.e., continuous time, value, space systems).
Furthermore, the main advantage of feedback, that is,
the robustness over parameter uncertainty, has never
been examined.

The aim of the present work is to propose a feed-
back control method for suppressing spirals and spa-
tiotemporal chaos in an excitable medium described by
a partial differential equation: this method uniformly
applies small impulsive external force, on the basis of
real-time rough information on the medium, to whole
area on the medium. Its robustness over parameter un-
certainty is investigated using numerical simulations.

2. Feedback control

The Bär model with no-flux boundary [14], one of
the most popular models used in examining the con-
trol methods for elimination of the spirals and the spa-
tiotemporal chaos,
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is here considered, where u ∈ R and v ∈ R are fast and
slow variables. ∇2 := ∂2/∂x2

1 + ∂2/∂x2
2 denotes the

Laplace operator. x1,2 ∈ [0, L] represents the position
on the medium with width L. According to Ref. [14],
the parameters, ε = 0.08, a = 0.84, and b = 0.07, are
fixed and the nonlinear function g(u) is given by

g(u) =
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1 u > 1

. (2)

The present work introduces an uncertain parameter
α > 0 in order to investigate the robustness of control

- 846 -

2014 International Symposium on Nonlinear Theory and its Applications
NOLTA2014, Luzern, Switzerland, September 14-18, 2014



Figure 1: Schematic illustration of measured informa-
tion y and feedback force e

systems over parameter uncertainty1. Medium (1) for
α = 1 is equivalent to the original Bär model.

The external force with the amplitude E0 and for
the small interval Δt � 1,

e =

{
E0 t ∈ [ti, ti +Δt]

0 otherwise
, (i = 0, . . . ,M − 1), (3)

is applied with spatially uniformity to the medium M
times. Remark that the force is added to the dynam-
ics of slow variable2. A single impulsive force (M = 1)
[3] can induce an elimination of propagating wave as
follows: the force increases v in the entire medium; the
wave front (back) velocity decreases (increases) due to
the increase of v at the wave front (back); this fact
leads to narrow the wave width; if the amplitude E0

is large, the wave back hits the wave front and then
the propagating wave vanishes. In contrast, if E0 is
not large, the wave back cannot hit the wave front
and then the propagating wave survives. Our previ-
ous study [10] showed that the periodic impulsive force
(3) with ti = t0 + iT , where T denotes the period of
impulsive force, can eliminate the propagating wave
even with small amplitude E0 by a repeat of the above
actions. However, the periodic force has a problem
how to design T when the medium has some uncer-
tain parameters. This is because T depends on the
parameters. It should be emphasized that these forces
mentioned above are classified into the nonfeedback
control.

1The parameter α directly influences the dynamics of slow
variable v: an increase of α expands the width of the propagat-
ing waves on the medium.

2Most of the previous studies on control of excitable media
employ the fast variable for the force; however, the present paper
employs the slow variable. The reason is described in Refs.
[10, 15].

Figure 2: Snapshot of spatial behavior with α = 1.0

The present paper considers feedback control,
which measures a rough real-time information on the
medium, that is y, and then applies the impulsive force
with the amplitude E0 at time ti (see Fig. 1). The in-
formation y, the ratio of a space mean excited area to
the whole medium area L2, is given by

y =
1

L2

∫ L

0

∫ L

0

H(u− u0)dx1dx2, (4)

where H is a step function and u0 := b/a is the thresh-
old for excitation. ti is the time when y is at a local
minimum, that is,

dy

dt

∣∣∣∣
t=ti

= 0,
d2y

dt2

∣∣∣∣
t=ti

> 0. (5)

The first impulsive force is applied at t = t0 indepen-
dently of y and then the above control law is used from
t = t1. In order to avoid the feedback force with short
intervals3, we define ti such that condition (5) and
ti−ti−1 ≥ Tmin hold. Further, the feedback force is ap-
plied until y becomes almost zero: y < δy � 1 holds.
The feedback force can be considered as an extension
of the previous report [13] to continuous systems.

3. Numerical simulations

This section will numerically investigate the con-
trol performance. The parameters are set as follows:
L = 100, Δt = 0.1, time step for numerical integration
h = 0.02, number of space grid N = 128, threshold
of short intervals Tmin = 0.12, and threshold of sup-
pression δy = 10−5. The numerical simulations are

3The impulsive forces with short intervals would not be easily
realized in practical situations such as a defibrillator.
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Figure 3: Time-series data of y and e with periodic
force (E0 = 1.5, T = 1.5): (a) α = 0.8, (b) α = 1.0.

achieved by the popular forward-time centered-space
method4. Figure 2 shows a snapshot of spatial behav-
ior on medium (1) without control (i.e., e ≡ 0).

In order to compare the robustness of the feed-
back force with that of typical nonfeedback control,
that is, the periodic force (3) [10]. Figure 3a illus-
trates the time-series data of spatiotemporal behavior
on medium (1) for α = 0.8 with the periodic force.
The excited ratio y drops at every impulsive forces; as
a consequence, the five small periodic impulsive forces
eliminate the excited region. On the other hand, for
α = 1.0, as demonstrated in Fig. 3b, the periodic force
fails to eliminate it even with the same period. These
results suggest that the suitable period T depends on
the parameter α; in other word, this method is not
robust over the uncertain parameter. Therefore, for
the situation where the parameter α is unknown, one
cannot design the period T in advance.

In contrast, as shown in Figs. 4a and 4b, the feed-
back force succeeds in eliminating the excited region
both for α = 0.8 and α = 1.0: it can be seen that the
impulsive forces are added with proper timing. From

4The time series y on numerical simulations is not smooth
due to space discretization; thus, tave = 0.06 backward moving
average is used for smoothing y.
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Figure 4: Time-series data of y and e with feedback
force (E0 = 1.5): (a) α = 0.8, (b) α = 1.0.

these results, we can see that the feedback force is ro-
bust over the uncertain parameter compared with the
periodic force.

4. Discussions

Let us investigate the control performances of the
periodic force and the feedback force from practical
viewpoints. We define two performance indices: the
total energy required to eliminate y,

W =

∫ ∞

0

e2dt, (6)

and the average period of forces,

T =
1

M − 1

M−1∑
i=1

(ti − ti−1) . (7)

It is easy to understand that the small energy and the
long period, which reduces damage to a medium, are
desired for practical situations.

Figure 5a shows the total energy W plotted as a
function of the force period T and the uncertain pa-
rameter α for the periodic force. It should be noted
that the periodic force with the parameter set (α, T )
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Figure 5: Plots of total energy W against force period
T (or T ) and uncertain parameter α ∈ [0.8, 1.2] with
E0 = 1.5: (a) periodic force, (b) feedback force.

at W = 0 fails to eliminate it as demonstrated in Fig.
3b. From Fig. 5a, we see that T = 1.5, which was
used in Fig. 3, may be one of good candidates for sup-
pression, since we have a long period and a not-so-high
energy. We notice that this is true for small α (e.g.,
α = 0.8), but not for large α (e.g., α = 1.0), as shown
in Fig. 3. This result implies that it is not easy to
choose a long T if α is unknown.

Now let us consider the performance of the feed-
back force. For a given α, the total energy W and
the average period T estimated by Eq. (7) are plotted
in Fig. 5b. It can be seen that the feedback force,
which can automatically choose the long average pe-
riod (i.e., T ∈ [1.0, 1.5]), succeeds in eliminating it for
any α ∈ [0.8, 1.2]. Therefore, it may be concluded that
the feedback force is robust over the uncertain param-
eter.

5. Conclusion

This study investigated the robustness of the feed-
back force over an uncertain parameter, compared

with the periodic force: the feedback force can au-
tomatically choose the long average period for any un-
certain parameter within a range. These results would
be useful information for development of a less-invasive
defibrillator for irregular heartbeat. This is because
behavior of human hearts depends on individuals; the
defibrillator should be robust over the parameter un-
certainty, individual variation.
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