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Abstract—A simple model-independent propor-
tional feedback technique for stabilizing unknown un-
stable steady states is described. It makes use of ar-
tificially created stable steady states to find the un-
known coordinates of the inherent unstable steady
states. Two different physical examples have been in-
vestigated; the mechanical pendulum, and the chaotic
Duffing-Lindberg oscillator are considered both ana-
lytically and numerically.

1. Introduction

Stabilization of unstable steady states (USS) of dy-
namical systems is an important problem in basic sci-
ence and engineering applications, when periodic or
chaotic oscillations are undesirable behaviors. Con-
ventional control methods, based on proportional feed-
back [1, 2] require knowledge of a mathematical model
of a system or exact coordinates of the USS . However,
in many real systems, especially in biology, physiology,
economics, sociology, chemistry, neither the reliable
models nor the exact location of the USS are a priori

known. Moreover, the position of the USS may slowly
vary with time because of external unknown and un-
predictable forces. Therefore adaptive methods, auto-
matically tracing unknown USS are needed.

A large number of adaptive methods, using either
derivative feedback [3, 4], low-pass filters [5, 6, 7, 8, 9],
high-pass filters [10], notch filters [11] or delayed feed-
back [6, 7, 12, 13, 14] have been described in literature.
However, they can stabilize unstable nodes and unsta-
ble spirals only, but fail to stabilize the saddle-type
USS, more specifically the USS with an odd number of
real positive eigenvalues. To solve the problem of the
odd number limitation Pyragas et al. [15, 16] proposed
to use an unstable filter, that is a bold idea to fight
instability with another instability. The technique
has been demonstrated to stabilize saddles in several
mathematical models [15, 16, 17, 18] also in the exper-
iments with an electrochemical oscillator [15, 16] and
the Duffing-Holmes-type electrical circuit [18]. This
advanced method is limited, however, to dissipative
dynamical systems only. It is not applicable to con-
servative systems. The limitation of the unstable filter

method can be proved analytically using the Hurwitz
stability criteria. The necessary condition for stabiliz-
ing a saddle USS is that the cut-off frequency of the
unstable filter is lower than the damping coefficient of
the system [16, 18]. In conservative systems damping
is zero by definition. Formally, the cut-off frequency
could be set negative. However, this would mean that
the unstable filter should become a stable one and,
therefore, inappropriate to stabilize a saddle-type USS.
To get around the problem a conjoint filter, that in-
volves unstable and stable subfilters, has been sug-
gested and demonstrated for the Lagrange point L2 of
the Sun–Earth astrodynamical system [19]. Most re-
cent modifications of combined filter technique are de-
scribed in [20, 21, 22]. The control methods proposed
in [15, 18, 19, 20, 21, 22] are based on designing com-
plex higher order controllers with several adjustable
control parameters. Even linear analysis of the sta-
bility properties employs high-rank Hurwitz matrices
for determining the threshold values of the feedback
coefficients, while finding optimal control parameters
requires numerical solution of high order characteristic
equations. A simplified approach has been proposed
in our previous paper [23]. Though it admits the exis-
tance of some unknown parameters, it requires, how-
ever, the explicit form of the nonlinear functions.

In this work, we suggest a multistep feedback tech-
nique. In the first and the second steps two different
artificial stable steady states (SSS) are created and are
exploited to find the unknown coordinates of the in-
herent USS. In the final third step these coordinates
are used to stabilize the a priori unknown USS. We
call this method ”three–shot” technique for brevety.

2. Simple Mathematical Models

To demonstrate the idea we start with an extremely
simple one-dimensional example

ẋ = F (x, p). (1)

Here F (x, p) is a nonlinear function of variable x, while
p is a set of parameters. The steady states x0 are
found from an algebraic equation F (x0, p) = 0. If
the derrivative of F (x, p) with respect to x at x0 is

- 842 -

2014 International Symposium on Nonlinear Theory and its Applications
NOLTA2014, Luzern, Switzerland, September 14-18, 2014



positive, F ′

x(x, p)|x0
> 0, we deal with USS. The USS

can be stabilized by means of proportional feedback

ẋ = F (x, p) + k(x0 − x). (2)

If either the structure of the function F (x, p) is un-
known or it contains some unknown parameter, then
x0 is also unknown. Therefore the proportional feed-
back cannot be applied directly. However, we demon-
strate that this unknown USS can be still stabilized
by multistep proportional feedback. Stabilization is
achieved in three steps (“three shots”). In the first
and the second steps we apply proportional feedback
with an arbitrarily chosen reference points r1,2:

ẋ = F (x, p) + k(r1,2 − x), (3)

where r1,2 are any real constants, either positive or
negative (zero value is also applicable). For sufficiently
large k the feedback creates artificial SSS, x1,2, which
satisfy the steady state equations F (x1,2, p)+ k(r1,2 −
x1) = 0. Note, that the control term k(r1,2 − x1), in
general, do not vanish, because r1,2 are not the nat-
ural USS of the original Eq. (1). Assuming, that the
chosen reference points r1,2 are not too far from x0,
we formally linearize the nonlinear functions F (x1,2, p)
around x0: F (x1,2, p) = F (x0, p) + F ′

x(x, p)|x0
(x1,2 −

x0). Here F (x0, p) = 0 by definition. Then the non-
linear steady state equation read

F ′

x(x, p)|x0
(x1,2 − x0) + k(r1,2 − x1,2) = 0. (4)

These two linear equations have two unknowns,
namely F ′

x(x, p)|x0
and x0. Any of them or both can

be easily derived. Solving of the Eqs. (4) with respect
to x0 yields:

x0 =
r1x2 − r2x1

(r1 + x2) − (r2 + x1)
. (5)

Eventually, we use the derived value of x0 in the final
third step of stabilization, given by Eq. (2).

As a specific mathematical example we consider Eq.
(1) with F (x, p) = ax−p, where p is a priori unknown
parameter. There is a single USS: x0 = p/a. However,
it is unknown because of p. Two preparatory steps
with r1 and r2 give x1 = (kr1 − p)/(k − a) and x2 =
(kr2 − p)/(k − a), respectively. Finally, the intrinsic
USS x0 is obtained from formula (5). One can check,
that x0 from (5) coincides with the expected value
x0 = p/a.

The technique is applicable to higher order systems
as well, e.g. the second-order dynamical system

ẋ = y, ẏ = F (x, y). (6)

The steady states have two coordinates. One of them
is trivial: y0 = 0. Then x0 is found from F (x0, 0) = 0.
If F ′

x(x, y)|x0,y0
> 0 or F ′

y(x, y)|x0,y0
> 0 or both

derivatives are positive, the fixed point is an USS. De-
pending on the structure of F (x, y) and the inherent
parameters the USS might be either a node, a spiral
or a saddle. Any of them can be stabilized using the
proportional feedback:

ẋ = y, ẏ = F (x, y) + k1(x0 − x) + k2(y0 − y). (7)

In the case the F (x, y) is unknown, and consequently
x0 is unknown, we apply the three-step technique, sim-
ilarly to the one-dimensional system. The first and the
second steps are given by

ẋ = y, ẏ = F (x, y) + k1(r1,2 − x) − k2y. (8)

In the second control term with coefficient k2 we em-
ployed the fact that y0 = 0. Since the y-coordinates of
the artificial fixed points y1,2 = 0, the x1,2 are found
from the steady state equations: F (x1,2, 0)+ k1(r1,2 −
x1,2) = 0. After linearization F (x1,2, 0) = F (x0, 0) +
F ′

x(x, y)|x0,y0
(x1,2 − x0) = F ′

x(x, y)|x0,y0
(x1,2 − x0) we

come to a set of two linear equations, similar to Eqs.
(4) and finally to the expression for x0, exactly the
same as given by formula (5).

3. Mechanical Pendulum

Mechanical pendulum is given by

ẋ = y,

ẏ = −by − sinx + p. (9)

Here x is the angle between the downward vertical
and the rod, y is the angular velocity, b is the damping
coefficient, and p is a constant, but generally unknown
torque. For small torque p < 1, the system has two
fixed points [x01,02, y01,02] = [x01,02, 0], where x01 =
arcsin(p), x02 = π−arcsin(p). The x01 corresponds to
the SSS (lower position of the pendulum), while the
x02 is the x-coordinate of the saddle type USS (upper
position of the pendulum). The controlled pendulum
is described by

ẋ = y,

ẏ = −by − sin x + p + k1(x02 − x) − k2y. (10)

Linearization of Eq. (10) around x02 gives the char-
acteristic equation λ2+(b+k2)λ+k1+cosx02 = 0. For
small p the angle x02 ≈ π, thus λ1,2 = −(b + k2)/2 ±
[(b + k2)

2/4 − k1 + 1)]1/2. The threshold value of the
feedback coefficient is k1th = 1 for which the largest
eigenvalue λ1 crosses zero from positive to negative
values. The optimal value of the feedback coefficient
k1opt = 1 + (b + k2)

2/4; the eigenvalues are both neg-
ative and equal to each other, λ1 = λ2 = −(b + k2)/2.
Further increase of k1 makes the eigenvalues complex,
but does not change their real parts. So, for higher
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Figure 1: Stabilization of the upper position of me-
chanical pendulum from Eq. (10). b = 0.1, p = 0.3,
r1 = 2.7, r2 = 2.8, k1 = k2 = 2. Initial con-
ditions x(0) = y(0) = 0. The control is switched
on at t = 0. The value stabilized in the 1st step
x1 = 2.5867, the value stabilized in the 2nd step
x2 = 2.7670, the reference point calculated from for-
mula (5) x02 = 2.8411, the value stabilized in the 3rd
step x3 = 2.8449, the remaining difference in the 3rd
step δ = x02 −x3 = −0.0038, |δ|/x02 ≈ 0.1%, the ana-
lytical value of the UFP x0 = π − arcsin(p) = 2.8369.

feedback coefficients the convergence rate saturates
with k1 and is fully determined by (b + k2). In the
case of weak damping (b ≪ 1) a reasonable pair of the
feedback coefficients is k1 = 2 and k2 = 2, yielding
Reλ1,2 ≈ −1. Results are shown in Fig. 1.

4. Duffing-Lindberg Chaotic Oscillator

Duffing–Lindberg oscillator is described by [24]:

ẋ = y,

ẏ = x − x3 + by − cz + p,

ż = ω0(y − z). (11)

For |p| < 2/
√

27 the system has three fixed points
[x0, y0, z0] = [x0, 0, 0]. The x-coordinates are found
from a cubic steady state equation x3

0
− x0 − p = 0.

For p = 0 the solution is simple: x01 = −1, x02 = 0,
x03 = 1. For non-zero p the expressions are:

x01 = −h cos
π − θ

3
, x02 = −h cos

π + θ

3
,

x03 = h cos
θ

3
, h =

2√
3
, θ = arccos

3p

h
(12)

All the fixed points are unstable. The side fixed points,
x01 and x03 are either unstable nodes or unstable spi-
rals. The most complicated is the middle one, x02 in
the sense that it is a saddle with one positive eigen-
value. Similarly to the previous examples we apply

Figure 2: Stabilization of the USS of the Duffing-
Lindberg oscillator from Eq. (13). b = 0.35, c = 1.6,
ω0 = 0.5, p = 0.1, r1 = 0, r2 = −0.05, k1 = 6, k2 = 2.
Initial conditions x(0) = 0.1, y(0) = z(0) = 0. The
control is switched on at t = 100. The value stabi-
lized in the 1st step x1 = 0.0200, the value stabilized
in the 2nd step x2 = −0.0400, the reference point cal-
culated from formula (5) x02 = −0.1, the value sta-
bilized in the 3rd step x3 = −0.0998, the remaining
difference in the 3rd step δ = x02 − x3 = −0.0002,
|δ|/|x02| ≈ 0.2%, the analytical value of the USS from
(12) x02 = −0.1010.

proportional feedback in the form of k1(x0 − x)− k2y:

ẋ = y,

ẏ = x − x3 + by − cz + p + k1(x02 − x) − k2y,

ż = ω0(y − z). (13)

Here we note, that in equation for variable y it is pos-
sible to use one more feedback term, namely −k3z.
However, two terms are sufficient for stabilization.
Linearization of Eqs. (13) around x02 leads to a cubic
characteristic equation λ3 + a3λ

2 + a2λ + a1 = 0 with

a1 = ω0(k1 − 1), (14)

a2 = k1 + ω0(k2 + c − b) − 1, (15)

a3 = k2 + ω0 − b. (16)

When deriving expressions (14–16) we assumed for
simplicity that 3x2

02
≪ 1. The third-order system (13)

is stable, if the eigenvalues Reλ1,2,3 of the character-
istic equation are all negative. Reλ1,2,3 < 0, if the all
following inequalities are fulfilled:

a1 > 0, a3a2 − a1 > 0, a3 > 0. (17)

The a1 > 0, if k1 > 1. Once k1 > 1, the second
inequality is easily fulfilled for the given parameters c
and b (even for k2 = 0). Finally, a3 > 0 holds for the
given parameters ω0 and b (even for k2 = 0). However,
k2 > 0 makes the transients shorter. Numerical results
are presented in Fig. 2.
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“Techniques for modeling and controlling the
Mackey-Glass system,” Int. J. Bifurcation Chaos,
vol.7, pp.957–962, 1997.

[8] A. Schenk zu Schweinsberg, U. Dressler, “Charac-
terization and stabilization of the unstable fixed
points of a frequency doubled Nd:YAG laser,”
Phys. Rev. E, vol.63, 056210, 2001.

[9] H. Huijberts, “Linear controllers for the stabiliza-
tion of unknown steady states of chaotic systems,”
IEEE Trans. Circuits Syst. – I: Regular Papers,
vol.53, pp.2246–2254, 2006.

[10] M. Ciofini, A. Labate, R. Meucci, M. Galanti,
“Stabilization of unstable fixed points in the dy-
namics of a laser with feedback,” Phys. Rev. E,
vol.60, pp.398–402, 1999.

[11] A. Ahlborn, U. Parlitz, “Chaos control using
notch filter feeedbck,” Phys. Rev. Lett., vol.96,
034102, 2006.

[12] K. Pyragas, “Control of chaos via extended de-
lay feedback,” Phys. Lett. A, vol.206, pp.323–330,
1995.
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R. Kirvaitis, “Autonomous third-order Duffing-
Holmes type chaotic oscillator,” Proc. Eur. Conf.

on Circuit Theory and Design, 23-27 August,
2009, Antalya, Turkey, pp.663-666, IEEE, New
York, 2009.

- 845 -


