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Abstract—
In this paper we apply a switched Model Predictive Con-

trol strategy for the speed regulation of a powertrain sys-
tem with backlash, composed by a motor and a load con-
nected through an elastic shaft and a gear. We show that the
proposed control strategy allows for a fast tracking, even
in the presence of load torque, by completely suppress-
ing rebounds on the gear teeth, which are instead evident
if simpler (e.g., proportional-integral) control strategies are
adopted.

1. Introduction

Permanent Magnet Synchronous Motors are widely used
in industrial processes due to their high power density and
the relatively low control complexity. Among the possible
application fields of these devices, there are robot manip-
ulators, numeric control machines, rolling-mills and paper
machines. Direct drive systems with high stiffness are usu-
ally adopted when high performance is required [1]. In
some applications, however, geometrical constraints im-
pose the use of transmission elements such as shafts and
gears. The elasticity of the shaft and the backlash intro-
duced by the gear provoke notable effects in the system,
that have to be compensated by the controller in order to
achieve fast and smooth responses, without rebounds in the
gear teeth which may cause premature component wear.

Traditionally used controllers in industrial field, such as
proportional-integral (PI) controllers, are often not able to
handle these aspects, resulting in low quality dynamic re-
sponses of the system and sometimes in unstable behaviors.
The control of powertrain systems with backlash has been
widely studied in recent literature [2, 3, 4]. In [4], in par-
ticular, the system is modeled as a piecewise-affine (PWA)
system and is controlled with Model Predictive Control
(MPC) technique.

MPC is a popular technique for the control of con-
strained linear systems. In its classical formulation, the
computation of the control function requires the online so-
lution of an optimization problem, which is a quite de-
manding task. In [5] the computation was brought offline
thanks to multi-parametric programming and an explicit
solution was obtained, which results being a PWA function
of the system states. MPC formulation can be extended for
the control of PWA systems and the resulting solution is
again a PWA function of the state, usually defined over a

large number of partitions. A suitable strategy to reduce
drastically the number of partitions (at the cost of a loss
of performance) is the switched MPC approach, success-
fully applied for instance in [6]. This approach consists in
solving different MPC optimization problems, one for each
affine system dynamics. This allows to define different cost
functions and constraints for each MPC controller.

In this work we exploit switched MPC for the speed reg-
ulation of a powertrain system with backlash. The result-
ing control function is a PWA function defined over a very
small number of regions with respect to the solution pro-
posed in [4]. We also provide a comparative study with
a classical PI, in order to show the advantages of the pro-
posed control algorithm.

This work is intended as a theoretical validation of a con-
trol strategy, indeed we do not take into account errors due
to state estimation, model uncertainties, delays and quanti-
zation effects. Moreover we completely exclude the elec-
trical dynamics from our analysis.

2. Notation

Subscript k is used to indicate the discrete-time instant,
i.e., xk = x(kτ), being τ the sampling period. If x is the
state of a dynamical system, the notation xk+i|k represents
the predicted state at time (k + i)τ starting from state xk.
Given a matrix M, Mi j is the element in i-th row and j-
th column. M � 0 indicates the positive definiteness of
the matrix, and M � 0 the positive semi-definiteness. All
inequalities involving arrays are to be intended component-
wise. 1(t) is the step function, i.e., 1(t) = 0 if t < 0 and
1(t) = 1 if t ≥ 0.

3. Model of the system

We consider a mechanical system composed by an AC
motor (characterized by momentum of inertia Jm and vis-
cous friction bm) connected to a rotating load (with mo-
mentum of inertia Jl and viscous friction bl) by an elastic
shaft equipped with a gear (see Fig. 1 for a schematic rep-
resentation). The motor generates a driving torque Tm, and
the shaft (with elastic constant c and damping factor b) can
in turn produce a torque Ts. A disturbance torque Tl acting
on the load is also considered.

The presence of the gear introduces the phenomenon of
backlash, which causes the motor and the load to be uncou-
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Figure 1: Schematic representation of the powertrain sys-
tem with backlash.

pled for a small amount of time when the motor goes from
braking to acceleration and vice versa. The backlash gap
angle is denoted as 2α (see Fig. 1).

We briefly recall the modeling strategy for this system
as proposed in [4]. In the next section we will show some
simplifications to this model, necessary to design a simpler
controller. The system can operate in two distinct modes:
contact when motor and load are coupled and backlash
when they are uncoupled. By defining θb the backlash an-
gle, we can state that the system is in backlash mode when
one of the following conditions holds:

|θb| < α (1)

θb = α and ∆θ̇ +
c
b

(∆θ − θb) < 0 (2)

θb = −α and ∆θ̇ +
c
b

(∆θ − θb) > 0 (3)

Inequality (1) indicates that motor and load are uncoupled.
(2) and (3) are limit conditions, in which motor and load
are in contact but they are going to uncouple at the next
time instant.

In each of the working modes the system dynamics is
affine, therefore the overall system can be modeled with a
PWA model:

ẋ =

Acox + Bu + f w (contact)
Ablx + Bu + f w (backlash)

(4)

being x = [ωm ωl θm θl θb]T , u = Tm and w = Tl the system
state, input and disturbance, respectively; θm, ωm, θl and ωl

are the angles and angular speeds of the motor and load,
respectively. The system matrices are defined as follows:

Aco =


−

bm+b
Jm

b
Jm

− c
Jm

c
Jm

c
Jm

b
Jl

−
bl+b

Jl

c
Jl

− c
Jl
− c

Jl

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0


(5)

Abl =


−

bm
Jm

0 0 0 0
0 −

bl
Jl

0 0 0
1 0 0 0 0
0 1 0 0 0
1 −1 c

b − c
b − c

b


(6)

B =
[

1
Jm

0 0 0 0
]T

(7)

f =
[
0 1

Jl
0 0 0

]T
(8)

In this paper we assume that the system state and the dis-
turbance (x and w) are completely measurable. In real ap-
plications, usually, only the motor angle is measurable and,
therefore, the design of an observer would be necessary.

Table 1 shows the values of all system parameters, re-
lated to a AC motor providing the driving torque and a DC
motor acting as load.

Name Value Unit

Jm 1 · 10−3 kg m2 rad−1

Jl 4 · 10−3 kg m2 rad−1

bm 1 · 10−4 N m s rad−1

bl 2 · 10−4 N m s rad−1

c 2.0213 · 104 N m rad−1

b 8.042 · 10−1 N m s rad−1

α 8.7 · 10−3 rad

Table 1: Model parameters.

4. Model Predictive Control

4.1. Description

Consider a discrete-time affine system in the form:

xk+1 = Axk + Buk + f (9)

subject to constraints:

umin ≤ uk ≤ umax (10)
xmin ≤ xk ≤ xmax (11)

where xk and uk denote the system state and input. The
MPC technique provides a control function uk = u(xk) for
the regulation of the system state to a reference state xre f

by solving the following optimization problem [5]:

min
uk ,...,uk+Nu−1

(xk+N − xre f )T P(xk+N − xre f ) + (12)

+

N−1∑
i=0

{
(xk+i|k − xre f )T Q(xk+i|k − xre f ) + uT

k+iRuk+i

}
s.t. xk+i+1|k = Axk+i|k + Buk+i + f (13)

uk+i = 0, i ≥ Nu (14)

umin ≤ uk+i ≤ umax, i = 0, . . . ,Nc (15)

xmin ≤ xk+i|k ≤ xmax, i = 1, . . . ,Nc (16)
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where N, Nu and Nc are the prediction horizon, control
horizon and constraints horizon, respectively; P = PT � 0,
Q = QT � 0, R = RT � 0 are matrices of a proper size. The
above problem can be solved explicitly [5] by obtaining a
control law uk which results being a PWA function of the
system state xk defined over generic convex polytopes. In
the solution of the optimization problem, only uk is consid-
ered; all other functions uk+1, . . . , uk+Nu−1 are discarded.

This formulation can be extended to hybrid systems (in-
cluding PWA systems like (4)). The resulting control law is
again a PWA function of the system state but is usually de-
fined over a large number of polytopes. In order to reduce
the complexity of the controller, we employed a switched
approach [6], i.e., we solved separate MPC problems in the
form (12), by considering only one affine dynamics at once.

4.2. Model approximation

In order to design a simpler MPC controller, we make
some modifications to model (4). Since the dynamics of the
whole system depends on ∆θ = θm − θl, rather than on the
two angles separately, we can consider ∆θ as a state vari-
able instead of θm and θl. Furthermore, we notice that state
variable θb can be removed; θb can be assumed (with good
approximation degree) equal to: ∆θ when the system is in
backlash mode, α when ∆θ ≥ α, and −α when ∆θ ≤ −α.
Moreover, conditions (1)-(3) can be simplified as follows:

|∆θ| < α (17)

After these simplifications, we discretize the system with
zero-order hold method, since MPC technique requires a
discrete-time representation of the system. Finally, instead
of uk, we consider as an input to the system the increment
∆uk = uk − uk−1. This implies that uk−1 must be considered
as a state variable, in order to perform tracking.

4.3. Control design

4.3.1. Contact

The objective of the controller is to regulate the angular
speed of the load (ωl) to a given reference (ωre f ), by im-
posing an a proper driving torque (Tm) fulfilling input and
state constraints. This task can be accomplished only if the
system is in contact mode, since in backlash the motor and
the load are uncoupled.

As stated in section 4.2, due to the removal of state vari-
able θb, we can distinguish between two different contact
dynamics: the first one (positive contact) applies when
∆θ ≥ α, the second one (negative contact) is valid when
∆θ ≤ −α. Since the objective of the control is to bring ωl

to ωre f , we can replace state variable ωl with the tracking
error el = ωl − ωre f , to be regulated to 0. Also the refer-
ence speed ωre f and the load torque Tl must be included
in the state vector, in order to formulate each contact dy-
namics as in equation (9). These two values are assumed to

be constant in prediction phase. The state vector is there-
fore defined as xk = [ωm,k el,k ∆θk uk−1 ωre f ,k Tl,k]T and the
reference state as xre f = [0 0 0 0 0 0]T .

We designed two different MPC controllers for the con-
tact working condition: the control law ∆uPC

k for positive
contact and the function ∆uNC

k for negative contact. The
control parameters for both controllers are: τ = 250µs,
N = 70, Nu = 2, Nc = 1, Q22 = 1000,1 P = Q,
R = 1. The bounds for system states and inputs are:
xmax = −xmin = [100 rad

s 200 rad
s 2α 10Nm 100 rad

s 10Nm]T

and umax = −umin = 20Nm.

4.3.2. Backlash

As stated before, when the system is in backlash mode,
it is not possible to control the load speed by imposing a
motor torque. Therefore, the objective in this case is to
connect the motor to the load as quickly, soon as possible,
so that the driving torque can be transmitted. This means
bringing the angular displacement ∆θ to either α (positive
backlash) or −α (negative backlash), according to the sign
of the tracking error el. Indeed, el > 0 means that the load
speed is greater than the reference speed, and therefore it is
necessary to bring the angular displacement to −α in order
to brake the load. Conversely, ∆θ must be brought to α in
order to accelerate the load. Moreover, to avoid rebounds
on the gear teeth, it is important that motor and load con-
nect with the same angular speed, i.e., ωm = ωl. State and
input constraints must be imposed too.

Also in this case we designed two different MPC con-
trollers: the control law ∆uPB

k for positive backlash and the
function ∆uNB

k for negative backlash. The state vector is
defined as xk = [ωm,k ωl,k ∆θk uk−1 Tl,k]T and the refer-
ence state as xre f = [0 0 α 0 0]T for positive backlash and
xre f = [0 0 −α 0 0]T for negative backlash. Notice thatωre f

is not included in the state vector since it is not necessary
for the control objective.

The control parameters are: τ = 250µs, N = 12, Nu = 2,
Nc = 1, Q11 = Q22 = 100, Q12 = Q21 = −100, Q33 = 10,1

P = Q, R = 0.1. The bounds for system states and inputs
are: xmax = −xmin = [100 rad

s 100 rad
s 2α 10Nm 10Nm]T and

umax = −umin = 20Nm.
In conclusion we designed four distinct MPC controllers,

one for each working mode (positive contact, negative con-
tact, positive backlash, negative backlash). According to
the value of ∆θ and el, the appropriate controller is chosen,
as summarized in Fig. 2.

5. Results

We designed the four MPC control laws ∆uPC
k , ∆uNC

k ,
∆uPB

k and ∆uNB
k by using MOBY-DIC Toolbox [7] inter-

faced with Multi Parametric Toolbox [8]. These control
laws are PWA functions defined over 9, 9, 15 and 15 poly-
topes, respectively. For the sake of comparison, we also de-

1All remaining elements of matrix Q are set to 0.
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Figure 2: Flowchart showing the switching conditions for
choosing one of the four controllers.

signed a discrete-time PI controller uPI
k = Kp(ωre f ,k−ωl,k)+

Kiτ
∑k

j=0(ωre f ,k − ωl,k) with Kp = 2.5 and Ki = 75.2 The
performances of MPC and PI controllers are compared on a
benchmark scenario where we impose a piecewise-constant
reference speed and load torque, in particular: ωre f (t) =

−100[1(t)−1(t− t1)] + 100 1(t− t1) and Tl(t) = −91(t− t2)
with t1 = 0.075s and t2 = 0.2s. The Simulink simula-
tion results of the closed-loop system, composed by the
continuous-time plant (4) and the MPC and PI controllers,
are shown in Fig. 3.

It can be noticed that both controllers allow correctly
tracking the reference speed profile also in the presence of a
high load torque, as visible in the upper panel of Fig. 3. The
response is slightly faster when the PI controller is applied,
but the MPC controller completely removes the rebounds
on the gear teeth, as highlighted in the zoomed rectangles
in Fig. 3. In correspondence of the switching instants, in-
deed, it can be noticed that the MPC control function differs
significantly from the PI one (see bottom panel).

6. Conclusions

We designed a switched MPC control system for the
speed regulation of a rotating load connected to a driving
motor through an elastic shaft with a gear. The control sys-
tem is composed by four different MPC controllers with a
very simple structure. The proposed controller outperforms
a more traditional PI controller, since it allows completely
removing the rebounds on the gear teeth, without losing
convergence speed.
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