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Abstract—A coupled system of two asynchronous cel-
lular automaton oscillators is introduced. It is shown that
the coupled system can realize various nonlinear filter char-
acteristics. Potential applications of the coupled system are
also discussed.

1. Introduction

Recently, asynchronous cellular automaton neuron mod-
els have been investigated [1]-[6], the advantages and sig-
nificances of which include the following points (see also
[1] and references therein). (a) The asynchronous cellular
automaton neuron model can be implemented by a recon-
figurable hardware such as field programmable gate array
(ab. FPGA). A control parameter of the model is a pat-
tern of reconfigurable wires in a sequential logic circuit,
and thus the parameter can be dynamically tuned by uti-
lizing a dynamic reconfiguration function of the FPGA.
Hence the asynchronous cellular automaton neuron model
is suited for on-chip learning. On the other hand, dynamic
parameter tuning of an analog circuit neuron model is of-
ten cumbersome. (b) The asynchronous cellular automaton
neuron model consumes less hardware resources than the
digital processor neuron for a wide range of reasonable pa-
rameter values. Also, unlike the digital processor neuron,
the asynchronous cellular automaton neuron model uses no
peripheral circuitry that plays no essential role to reproduce
the nonlinear dynamics of a neuron. As a result, we can say
that the asynchronous cellular automaton neuron model is a
compact and low-power hardware neuron model. (c) Due
to its compact and low-power features, the asynchronous
cellular automaton neuron model is suited for many appli-
cations such as neural prosthesis chip and special hardware
for large scale brain simulation. (d) From an academic
viewpoint, modeling of the nonlinear dynamics of a biolog-
ical system by a new way (e.g., modeling of the neuron’s
dynamics by the asynchronous cellular automaton like this
paper) per se is an important research topic.

In this paper, a coupled system of two asynchronous cel-
lular automaton oscillators is introduced [6]. It is shown
that the coupled system can realize various nonlinear filter
characteristics. Potential applications of the coupled sys-
tem are also discussed.

2. Coupled system of two asynchronous cellular au-
tomaton oscillators

Let us refer to two asynchronous cellular automaton os-
cillators as OI and OO, where the indices I and O implicitly
imply an inner hair cell and an outer hair cell in the mam-
malian cochlea but these implications are not very empha-
sized in this paper. The coupled system has the following
discrete states.

Discrete states of OI

VI ∈ {0, 1, · · · ,MI − 1}, UI ∈ {0, 1, · · · ,NI − 1},
Discrete states of OO

VO ∈ {0, 1, · · · ,MO − 1}, UO ∈ {0, 1, · · · ,NO − 1},
Discrete state for coupling
x ∈ {0, 1, · · · , L − 1}.

The oscillators OI and OO accept two independent clocks
CI (t) and CO(t) with periods fI and fO, respectively. As
preparation to construct vector fields of the oscillators OI

and OO, the following functions are introduced.

Functions used to construct vector fields of OI and OO

nVI (V
∗
I ) = α(�k1V∗I + k2�,NI),

nUI (V
∗
I ) = α(�k3V∗I + k4�,NI),

nVO(V∗O) = α(�k5V∗O + k6�,NO),
nUO (V∗O) = α(�k7V∗O + k8�,NO),

α(z, J) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if z < −1,

z if − 1 ≤ z ≤ J,
J otherwise,

where �·� is the floor function and

k1 =
n1NI
MI
, k2 = �n2NI�, k3 =

n3NI
MI
, k4 = �n4NI�,

k5 =
n5NO
MO
, k6 = �n6NO�, k7 =

n7NO
MO
, k8 = �n8NO�.

For simplicity, let us introduce the following notations.

“↑” denotes “a positive edge of a clock.”
“:=” denotes “an instantaneous transition

of a discrete state.”

Then the state transitions of the oscillators OI and OO in-
duced by the clocks CI (t) and CO(t) are described by the
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following equations, respectively.

State transitions of OI induced by clock CI(t)
If CI(t) =↑, then

VI(t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

VS if VI = VS ,UI < nVI (V
∗
I ),

MI − 1 if VI = MI − 1,UI > nVI (V
∗
I ),

VI − 1 if VI � VS ,UI < nVI (V
∗
I ),

VI + 1 if VI � MI − 1,UI > nVI (V
∗
I ),

VI otherwise (UI = nVI (V
∗
I )),

UI(t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if UI = 0,UI > nUI (V
∗
I ),

NI − 1 if UI = NI − 1,UI < nUI (V
∗
I ),

UI − 1 if UI � 0,UI > nUI (V
∗
I ),

UI + 1 if UI � NI − 1,UI < nUI (V
∗
I ),

UI otherwise (UI = nUI (V
∗
I )).

State transitions of OO induced by clock CO(t)
If CO(t) =↑, then

VO(t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if VO = VS ,UO < nVO (V∗O),
MO − 1 if VO = MO − 1,UO > nVO(V∗O),
VO − 1 if VO � 0,UO < nVO(V∗O),
VO + 1 if VO � MO − 1,UO > nVO(V∗O),
VO otherwise (UI = nVO(V∗O)),

UO(t) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if UO = 0,UO > nUO (V∗O),
NO − 1 if UO = NO − 1,UO < nUO (V∗O),
UO − 1 if UO � 0,UO > nUO (V∗O),
UO + 1 if UO � NO − 1,UO < nUO (V∗O),
UO otherwise (UO = nUO (V∗O)).

Also, let us introduce the following saturation set

Saturation set
VS = {(VI ,UI) | VI = VS }

on which the state vector (VI ,UI) is saturated. In addition
to the clocks CI(t) and CO(t), the oscillators OI and OO ac-
cept a stimulation spike-train S (t). The state transitions of
the oscillators OI and OO induced by the stimulation spike-
train S (t) are described by the following equation.

State transitions induced by stimulation S (t)
If S (t) =↑, then

VI(t) :=
{

VS if VO = VS ,
VI − 1 otherwise,

VO(t) :=
{

0 if VO = 0,
VO − 1 otherwise.

Finally, let us introduce the following coupling between OI

Figure 1: Basic dynamics of the coupled system.

and OO.

State transition of discrete state for coupling
If CO(t) =↑, then

x(t) :=
{

x + kVO(t) if x < L − 1,
x + kVO(t) − (L − 1) if x ≥ L − 1.

Coupling via spike-train y(t)

y(t) =
{

0 if x < L − 1,
1 if x ≥ L − 1,

If y(t) =↑, then

VI(t) :=
{

VS if V0 = VS ,
VI − 1 otherwise.

Fig. 1 shows basic dynamics of the coupled system.

3. Nonlinear filter characteristics and Discussion

Let the spike density of the stimulation spike-train S (t)
be sinusoidally modulated as follows.

The instantaneous spike density of S (t) is
σ(1 + sin(2π fS t)),

where fS is referred to as a modulation frequency and σ is
referred to as a stimulation intensity. Fig. 2 shows some
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typical simulation results. In order to characterize the re-
sponse of the coupled system to the stimulation spike-train
S (t), let us introduce the following RMS of VI − VS for a
given stimulation intensity σ.

RMS (σ) =

√
1
T

∫ T

0
(VI − VS )2dt

where T is sufficiently large. In addition, we introduce the
following threshold for the RMS .

RMS T > 0 is a threshold for the RMS (σ).

Then we introduce the following minimum stimulation in-
tensity Δs to realize RMS (σ) ≥ RMS T .

Δs = min
σ
{RMS (σ) ≥ RMS T }.

Fig. 3 shows characteristics of the minimum stimulation
intensity Δs. Note that such a characteristics curve of Δs
is often called a tuning curve in the literature of cochlea
[7],[8]. It can be seen in Fig. 3 that the coupled system real-
izes nonlinear band-pass filter characteristics. It should be
emphasized that these nonlinear band-pass filter character-
istics are similar to that of the basilar membrane in a mam-
malian cochlea [7],[8]. It should be also emphasized that
the coupled system mimics not only the nonlinear band-
pass filter characteristics of the basilar membrane but also
half-wave rectifier characteristics of the inner hair cell in a
mammalian cochlea [6]. Hence the coupled system will be
useful as a building block of a future cochlea implant that
can mimic nonlinear responses of the cochlea.

4. Conclusions

In this paper, the coupled system of two asynchronous
cellular automaton oscillators was introduced. It was
shown that the coupled system can mimic the nonlinear
band-pass filter characteristics of the basilar membrane as
well as the half-wave rectifier characteristics of the inner
hair cell. This work was supported by KAKENHI Grant
Number 20318603.
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(a) Time-waveforms of OI . k = 0.
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(b) Phase plane of OI . k = 0.
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(c) Time-waveforms of OI . k = 1.5 × 107.
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(d) Phase plane of OI . k = 1.5 × 107.
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(e) Time-waveforms of OO.
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(f) Coupling via discrete state x and spike-train y.

Figure 2: Simulation results. The parameters are MI = NI = 256, MO = NO = 128, L = 256, VS = 120, and
(n1, n2, · · · , n8) = (−0.5, 0.78, 16,−7.45,−0.5, 0.4, 16, 0). The periods of the clocks CI(t) and CO(t) are fI = 2.0 × 107 and
fO = 1.8 × 107, respectively. The parameters of the stimulation spike-train S (t) are fS = 9.0kHz and σ = 2.0 × 107.
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