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Abstract—Lesions in the brain can break the neuronal
synchronization and significantly affect brain function. In
this work we propose a simplified model to study the dy-
namical effect of random lesions. We show the existence of
a phase transition from the synchronized state to the desyn-
chronized state caused by the desynchronization of the non-
attacked neurons.

1. Introduction

The neurons in the brain are connected according to a
complex pattern of connectivity [1]. The topological orga-
nization of the brain has been associated with integration
and segregation properties [2]. The presence of lesions in
the brain causes abnormalities in the topological organi-
zation and has been associated with Alzheimer’s Disease,
Autism, Schizophrenia and other mental illnesses [6]. As
the synchronization plays an important role in information
processing and cognition [3, 4, 5], neural desynchroniza-
tion can be responsible for symptoms caused by neurode-
generative diseases.

Several studies have been made to understand the impact
of lesions in the brain [7, 8]. However the basic proper-
ties behind the lesions remain unclear. Based on this we
analyze in this work the coupling effect caused by ran-
dom lesions in a synchronized neural network of glob-
ally coupled Rulkov neurons. Despite the simplicity of
the model we have observed a non-trivial behavior in the
synchronization-desynchronization transition.

2. Neural Network

To study the transition from the synchronized to the
desynchronized state we will consider a simplified model
of globally coupled Rulkov neurons (all to all connections)
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wherex is called the fast variable andy is the slow variable,
α is associated with the burst frequency and is chosen by a

uniform random probability such thatα ∈ [4.1,4.3], N is
the network size,ε is the coupling strength and the other
parameters are set asσ = β = 0.001.

Several works have shown that this kind of network ex-
hibits phase synchronization [9, 10]. This property can be
evaluated by defining a phase according to burst frequency
such that for each neuron we have
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in which nk andnk+1 are the times of two succesive bursts.
The phase synchronization can be determined by the Ku-
ramoto order parameter,
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in which n′ is sufficiently large. The Kuramoto order pa-
rameter,< R >, is 1 when the network is completely syn-
chronized and 0 when desynchronized.

3. Phase Syncrhonization for Globally Coupled Rulkov
Neurons

For global coupling there is a critical value,εc, such the
network goes from the desynchronized state to the partial
synchronized state. For Rulkov neurons the critical value is
εc ≈ 0.02 as shown in the Figure 1, the phase transition is
independent of the network size. Figure 1 shows that when
the coupling strength isε = 0.04 the network reaches the
maximum possible value for the order parameter and we
consider the network completely synchronized in phase.

4. Desynchronization Induced by Random Attacks

Decoupling neurons randomly, it is possible to desyn-
chronize the network. To analyze this effect we first choose
an ε in which the network is completely synchronized in

- 831 -

2014 International Symposium on Nonlinear Theory and its Applications
NOLTA2014, Luzern, Switzerland, September 14-18, 2014



0 0.01 0.02 0.03 0.04
ε

0

0.2

0.4

0.6

0.8

1

<
R

>

N=1000
N=2500
N=5000
N=10000

Figure 1: Kuramoto order parameter for Rulkov neurons
globally coupled. The different colors represent different
network sizes.

phase and also other two cases,ε = 0.3 andε = 0.2, for
comparison. For each specificε we disconnect the neurons
one by one evaluating how the order parameter decreases.
When a neuron is disconnected from the network the cou-
pling strength is reduced by the factor

(N − l)
N
, (6)

in which l is the number of affected neurons. Figures 2
(a) and 3 (a) show that the network desynchronizes with
a lower coupling, the lower the coupling strength is in the
begining of the lesion. In Figure 2 (b) the order parame-
ter for the whole network decays linearly with the number
of disconnected neurons before decaying towards the criti-
cal value in which the whole network desynchronize. The
Figure 3 (b) shows that the non-attacked neurons desyn-
chronize almost all together.

5. Conclusions

For a network of globally coupled Rulkov neurons the
network is completely synchronized forε = 0.04 and in-
creasing the coupling strength above this value then in-
creases the robustness of the network making it neces-
sary to attack more neurons to desynchronize the network.
Analysing the cluster of non-attacked neurons we can see
that the critical point for the phase transition from the syn-
chronized to the desynchronized state is caused by the
desynchronization of this cluster.
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Figure 2: Desynchronization effect caused by random at-
tacks in the whole network. In both figures the colors rep-
resent different initial coupling strength for the moment in
which we start the attacks in the network. In the figure
(a) we present the Kuramoto order parameter as a function
of the coupling strength and in the figure (b) we present
the Kuramoto order parameter as a function of the discon-
nected neurons (DN). The black dashed line in the figure
(a) is the order parameter for the case without attacks (w.
lesion).
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Figure 3: Desynchronization effect in the non-attacked
cluster in the neural network. In both figures the colors
represent different initial coupling strength for the moment
in which we start the attacks in the network. In the figure
(a) we present the Kuramoto order parameter as a function
of the coupling strength and in the figure (b) we present
the Kuramoto order parameter as a function of the discon-
nected neurons (DN). The black dashed line in the figure
(a) is the order parameter for the case without attacks (w.
lesion).
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