
  

Figure 1. Main pathways of the Basal Ganglia network in healthy 

conditions and in Parkinson's disease. GPe: Globus Pallidus pars 
externa, GPi: Globus Pallidus pars interna, SNr: Substantia Nigra pars 

reticulata, SNc: Substantia Nigra pars compacta, STN: subthalamic 

nucleus, D1 / D2: dopamine receptors subfamilies. Red-dotted arrows 

represent inhibitory connections, and green-solid arrows excitatory 

ones. The thickness of the arrow represents the strength of the 

connection. In Parkinson's disease the SNc (the origin of dopamine) is 
progressively degenerated due to cell death. 
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Abstract– Parkinson's disease is a movement disorder 

characterized by alterations in the neuronal activity of the 

Basal Ganglia. In healthy conditions, neurons of the 

Globus Pallidus pars interna (GPi - one of the main output 

centers of the Basal Ganglia network) use at least partly a 

rate-code to transmit information to the motor cortex. 

Applying a temporal structure function analysis, we 

measured the rate-coding window in single Globus 

Pallidus pars interna (GPi) neurons of the 6-OHDA rat 

model of Parkinson's disease at different degrees of 

alertness, and compared it to non-parkinsonian control 

neurons.  We found that the temporal range of rate-coded 
information in GPi neurons was substantially reduced in 

the parkinsonian case. Making use of a network of coupled 

non-linear neurons, we model the GPi and show that the 

rate-code loss can be attributed to an increase in the small 

neighborhood coupling strength.  

 

1. Introduction 

 

Parkinson's disease (PD) is a neurodegenerative 

disorder, marked by the loss of dopamine in the Basal 

Ganglia (BG) [1]. Currently, the main explanatory 
framework accounting for the pathophysiology of PD is 

the so called classic model. It offers an interpretation of 

PD based on the overactivity of the output structures of 

the BG, namely the GPi and the Substantia Nigra pars 

reticulata (SNr - for a summary of the circuit alterations 

occurring in PD, see fig. 1) [2, 3]. These output centers 

are connected with an inhibitory projection to the motor 

Thalamus (Th), and therefore their effect is considered to 

be anti-kinetic (impairing voluntary movement). This anti-

kinetic activity is stimulated through the indirect pathway 

of the BG, and inhibited through the direct pathway 

(considered anti-kinetic and pro-kinetic, respectively). The 
effect of dopamine, which is progressively lost in PD, is to 

reduce the anti-kinetic activity by exerting a stimulatory 

effect over the direct pathway and an inhibitory one over 

the indirect pathway of the BG circuit [4]. 

A number of pathologic changes in the activity of BG 

neurons have been shown to present a correlation with the 

clinical manifestations of PD [5]. Of particular interest are 

the alterations in the activity of the Globus Pallidus pars 

interna (GPi), one of the main output centers of the BG 

network, since its high frequency stimulation with deep 

brain electrodes is able to reduce the symptoms of the 

disease [6]. The principal pathologic changes in the 

activity of the GPi in PD are: 1. an increase in the 

frequency of discharge, and 2. enhanced synchronization 

of the neuronal activity [1, 7]. In a previous work by our 

group, we showed that the rate-coding window of single 

GPi neurons is reduced in an animal model of PD, 

applying a structure function analysis to the comparison 

between neuronal recordings from a control group and a 

group of parkinsonian Sprague-Dawley, adult rats [8]. 

Here, we discuss a non-linear model of the GPi and 

analyze the changes that occur in the rate-coding window 
of single neurons following the increase of the local 

coupling strength.  

 

 

2. Methods 

 

2.1. Structure function analysis 

Identifying different states of a system according to its 

different scaling behaviors can be a key to the study of 

complex systems based on time series analysis [9]. To this 
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goal, a method that has been shown to be robust to the 

presence of drift, low frequency noise and short time 

series is the structure function analysis [10-12]. To 

analyze the temporal organization of single neurons' 

activity, the temporal structure function can be calculated 

based on an interspike interval (ISI) time series, where 

( )I j is the jth interspike interval and 

( ) ( ) ( )I I j I jτ τ∆ = + − is the difference between 

successive intervals, separated by an index increment 

Nτ ∈ +  . The structure function ( )
q

S τ is defined as 

 

    ( ) ( )q

qS iτ τ= ∆    ,          (1) 

 

where ⋅  accounts for the statistical average over the 

time series and q is a real number. The scaling behavior 

of
q

S is then characterized by the power law relationship 

 
( )( ) q

qS
ζτ τ∼     .                           (2) 

 
For a stationary process with independent increments 

( ) 0qζ = , which expresses that the mean correlation 

between successive events does not depend on the event 
index [13]. Monofractal, non-intermittent time series 

imply ( )q constζ = , whereas multifractal behavior is 

characterized by ''( ) 0qζ < . Therefore, the zero-slope 

regime ( ( ) 0qζ = ) of the structure function is of particular 

interest, since it marks the temporal scale across which 
only random processes are at work. For neuronal signals, 
this regime precludes coding schemes other than a rate 

code. Therefore, the zero-slope regime can be assimilated 
to the temporal window of rate-coding. 
 
2.2. Mathematical model 

 
We build a network in the form of a ring of coupled 

nonlinear Rulkov neurons [14]. The network architecture 
was considered identical for both the PD and the control 

case. In total, 101 GPi neurons were implemented, aligned 
on a ring structure. The inputs of the subthalamic nucleus 
(STN) and Striatum (Str) to the GPi are modeled as 
excitatory and inhibitory inputs respectively, and the 
spatial distribution of both inputs is close to the available 
histological data [15]. Excitatory input to the GPi is 
mediated by 101 STN axons, each of which sends 

collaterals to 10 neighboring cells using identical synaptic 
weights (wSTN-GPi=0.1). Inhibitory input to the GPi is 
mediated by 101 Str axons producing 10 collaterals each: 
one central connection to a GPi neuron with a high 
synaptic weight (wStr-GPi-I=0.9) and 9 connections to 
adjacent cells with a lower weight (wStr-GPi-II=0.01). In 
the simulation, each neuron has the form 

 

 
, 1 , , ,

( , )
i n i n i n i n

x f x y β+ = +   ,           (3) 

 
, 1 , , ,

( 1)
i n i n i n i n

y y xµ µσ µσ+ = − + + +   ,      (4) 

 

where the index n indicates the iteration step, and where 
function  f is given by 

 

1

1

/ (1 ) , 0

( , ) , 0 0

1, 0

n n

n n n

n n

x y x

f x y y x y and x

x y or x

α

α α

α
−

−

− + ≤


= + < < + ≤
− ≥ + >  .  (5) 

  

External input was modeled by 

 

u cIσ σ= +  ,                               (7) 

 

where 
uσ  represents the initial excitability of each 

isolated neuron and 
cI  models the input to the cell. Inputs 

were modeled by uniformly distributed random numbers 

from the unit interval, multiplied by the amplitude Ae, for 

excitatory input or by amplitude Ai, for inhibitory input, 

respectively. For every neuron, the parameter values 

4.5α = and 0.001µ = were used. To account for 

variability in initial neuronal excitation, 
uσ was drawn 

uniformly from [0.05, 0.15]. Small-range interactions 

were modeled by diffusive coupling among GPi cells. The 

coupling from each neuron i to its neighbors is described 

by the following equations (cf. [14], where we set 
eβ  and 

eσ  to 1): 

 
, , ,( )

e

i n ji j n i ng x xβ β= −   ,           (8) 

 
, , ,( )e

i n ji j n i ng x xσ β= −   ,                  (9) 

 

The local dependence of the coupling on the neighbor 

order j was implemented by 

 
2

( )
ji

D
g

i j
=

−
 .                   (10) 

Here, 
ji

g  are the elements of the adjacency matrix, which 

is symmetric assuming periodic boundary conditions, 

according to eq. 10. This form of coupling implies that the 

coupling strength decreases following a power-law with 
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Figure 2. Order-1 structure functions of the four simulated groups. A), B) Deep anesthesia condition, control and PD case, respectively. C), 
D) Full alertness condition, control and PD case, respectively. Smoothing over 20 data points was applied to the original data. Arrows indicate 

the breakpoint τ1 , where the small scale regime ends. Control neurons show a clear zero-slope scale-range (regime II) at both alertness 

conditions. PD neurons do not always show such a region. In the PD case neurons have an increased τ1 compared to the control group. 

 

the lattice distance, and hence D can be assimilated 

generally to a diffusion coefficient.  

We based our modeling on experimental data from 

previous works, and studied the parkinsonian and control 
case under 2 conditions: anesthetized and at full alertness. 

We modeled the parkinsonian case introducing a stronger 

diffusion constant (D=0.3 in the PD vs. D=0.01 in the 

control case) in addition to differing excitatory / inhibitory 

input levels (in agreement with the classic model of PD). 

The distinction between anesthetized and alert conditions 

was modeled by changed input amplitudes (Andres et al. 

2014). Whereas the anesthetized condition was modeled 

by Ae=1.5/25 and Ai=-1.2/-24.5, the alert condition  was 

modeled by Ae =2/50 and Ai=-1.5/-48.5 (control / PD 

cases, respectively). In this way, the two conditions were 

characterized by slightly different Ae/Ai ratios of 1.25/1.02 

(anesthesia) and 1.33/1.03 (alertness) for the control / PD 

case, respectively. (For details on our experimental data, 

see [16]). 

 

3. Results 

In our simulations, the PD case had a frequency of 

discharge significantly higher than the control case, which 

resembles the experimental situation. In the temporal 

structure function, two main regimes were identified. 

Regime I referred to the small-scale regime and showed 

an ascending behavior, ending abruptly at the breakpoint 

that we named τ1. This was followed by regime II, which 

corresponded to an essentially flat region. As was stated 

above, this flat region of the structure function represents 

the rate-coding window of the neuronal activity, and this 

regime was reduced in the PD simulation. The breakpoint 

τ1 moved further to the right from the control case under 
deep anesthesia (group I), to the control case at full 

alertness (group II) and the PD case under anesthesia 

(group III), and was highest in the PD case at full alertness 

(group IV). This marked the progressive reduction of the 

zero-slope scale-range, indicating a loss of the rate-coding 

properties in PD neurons.  

 

4. Discussion and conclusion 

In the parkinsonian BG, experimental evidence has 

shown that the frequency of discharge of GPi neurons is 

increased, and that the neuronal activity within the 

nucleus is pathologically synchronized [17]. None of these 

observations, however, provide any insight about the 

organization of the neuronal discharge in the time-domain. 

Applying a temporal structure functions analysis, we 

showed that different time scales are present in the 
activity of GPi neurons. This speaks in favor of a 

multiple-scale instead of a scale-free temporal 
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organization of the neuronal discharge, implying that the 

transmission of information might be favored in a limited 

time-range. In the GPi, Parkinson's disease acts 

deteriorating these temporal scales that are characteristic 

of healthy neuronal activity. We modeled this situation 

introducing diffusive coupling in a network of non-linear 

Rulkov neurons. This form of coupling shows a 

dependence on distance, and we hypothesize that this is 

necessary due to physiological processes involved in 

neuronal coupling other than synaptic cell-to-cell 

connectivity [18, 19]. 
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