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Abstract—We consider bifurcation of hyperchaos
in a four-dimensional manifold piecewise linear system
with hysteresis characteristics. The system dynamics
is reduced to a two dimensional piecewise linear return
map. By using the return map, we have discussed the
generation of hyperchaos in previous works. In this
paper, we focus on bifurcation phenomena which are
seen as changes of invariant sets of hyperchaos attrac-
tor of 2-D return map. We derive the bifurcation sets
and confirm some bifurcation of hyperchaos in labora-
tory measurements.

1. Introduction

Hyperchaos was introduced by Rössler in 1979 [1].
It is a high dimensional chaos that has more than one
positive Lyapnov exponent on 4 or more dimensional
state space in the case of autonomous and continu-
ous time systems. Many systems which exhibit hyper-
chaos have been studied, for example, Lorenz system
[2], Chua’s circuit-based high-dimensional system [3]
and four-dimensional (4-D) manifold piecewise linear
system [4]. In this study, we consider the 4-D manifold
piecewise linear system. The system has three contin-
uous state variables and one discrete variable which
takes two values, 1 or −1. The system dynamics is de-
scribed by two 3-D linear equations connected to each
other by the switching which is represented by the dis-
crete state. The system dynamics can be reduced to 2-
D piecewise linear return map. The return map enable
us to analysis of bifurcation and system stability. Hy-
perchaos observed in 2-D discrete time system is char-
acterized by two positive Lyapnov exponents. There
are many important works of nonlinear circuit analy-
sis based on its 1-D return map [5]. Some interesting
works based on 2-D return map has also been done rel-
ative to study of symple switched dynamical systems
[6][7]. On the other hand, many works of 2-D discrete
time nonlinear dynamical systems have been studied,
for example, Hénon map [8], Lozi map [9] and Lozi
map with hysteresis characteristics [10]. In this paper,
we consider a hysteresis return map derived from a 4-
D manifold piecewise linear system. The return map
exhibits bifurcation of hyperchaos such as generation
of Islands [11] and separation of invariant sets of at-

tractor of the return map. We show bifurcation sets in
parameter space and confirm typical bifurcation phe-
nomena by an experimental circuit.

2. Manifold piecewise linear system with hys-
teresis characteristic

We introduce a 4-D manifold piecewise linear system
with hysteresis characteristic. The system dynamics is
described as follows.
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where “·” is differential by normalization time τ , and
δ, λ and K are parameters which satisfy the following
conditions.

0 < δ < 1, 0 < λ < 1,K > 0. (2)

x, y and z are continuous variables and u is a binary
variable in order to describe the switching mechanism.
We prepare two 3-D state spaces corresponding to u :

S+ = {(x, y, z, u)|u = 1},
S− = {(x, y, z, u)|u = −1}. (3)

An example of system behavior on state spaces is
shown in Fig. 1. The trajectories on subspace S+

and S− behave as expanding oscillation on each space.
If a trajectory on S+ satisfy z > x+D and y = 0, then
u changes 1 to −1 and the trajectory jumps to same
point on S−. In like manner, if a trajectory on S− sat-
isfy z < x−D and y = 0, then u changes −1 to 1 and
the trajectory jumps to same point on S+. The system
repeats this behavior. Note that the parameter D is
positive real number. The system in previous work [4]
corresponds to the case of D = 0. The system dynam-
ics is characterized by 4 parameters (δ, λ,K,D). The
piecewise exact solutions are represented as follows.
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where φ = tan−1 δ
ω . Figure 2 shows a typical hy-

perchaotic attractor on 2-D projection. The block
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Figure 1: A typical trajectory on phase space

��� plane ���� plane

Figure 2: The typical hyperchaos attractor (D =
0, δ = 0.03, λ = 0.03,K = 0.5)

diagram of system is shown in Fig. 3. This circuit
consists of integrators, linear amplifiers and compara-
tors. The integrators and amplifiers are realized by
using operational amplifier TL074. The comparators
are implemented by LM339. There are two types of
comparators, one has a Signum-like characteristic and
the other has hysteresis. A hyperchaos attractor ob-
served from the experimental circuit is shown in Fig.
4. Circuit parameters are set to corresponding values
to the simulation result as shown in Fig. 2.

3. Hysteresis return map
We derive 2-D return map in order to analyze

bifurcation phenomena. We define a set P =
{(x, y, z, u)|y = 0} on phase space as Poincaré sec-
tion. Note that a trajectory stating from any point on
P at τ = 0 must return to P at τ = π/ω. Therefore,
we can define a return map F from P to itself.

F : P → P, (xn, zn, un) 7→ (xn+1, zn+1, un+1). (5)

The point on P is determined as 2-D coordinate
(x, z) and u, and let n-th point be represented by
(xn, zn, un). The map F is described explicitly as fol-
lows by using piecewise exact solutions (7).
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Figure 3: The block diagram of 4-D manifold piecewise
linear system
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Figure 4: Hyperchaos attractor of experimental circuit
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(6)

(

f+(xn) = −e
δπ
ω xn + (e

δπ
ω + 1),

g+(zn) = e
λπ
ω zn + (e

λπ
ω − 1)K/λ,

(

f−(xn) = −e
δπ
ω xn − (e

δπ
ω + 1),

g−(zn) = e
λπ
ω zn − (e

λπ
ω − 1)K/λ.

(7)

4. Bifurcation analysis

We set parameter values to δ = λ,K = 0.5 for ex-
ample. In the case of the parameter conditions of (2),
hyperchaos generation is guaranteed if on attractor ex-
ists. As shown in Fig. 5, the attractors change with
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Figure 5: Hyperchaos attractors of 2-D return map
(δ = λ = 0.015,K = 0.5)，(a)D = 0, (b)D = 0.4,
(c)D = 0.85, (d)D = 1.6, (e)D = 3.2
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Figure 6: Hyperchaos attractor of return map in lab-
oratory.

changing parameter. Here, we consider the case of D
increasing from zero. In Fig. 5(a), the support of pos-
itive invariant measure of attractor is split to 9 pieces.
We call the case “9 -piece chaos”. In Fig. 5(b), the
region whose invariant measure is zero appears. This
phenomenon is called “Island” [11]. By increasing D
further, the number of Island and piece of invariant
sets change as Fig. 5(c) and (d), afterward, the attrac-
tor is to be one piece chaos without Island as shown in
Fig. 5(e). We call such changes bifurcation of hyper-
chaos. The typical bifurcation can be recognized by
experimental circuit, as shown in Fig. 6.
4.1. Shapes of attractor

We consider the edge of attractor. We define the set
of points on the line z = x + D. The set is threshold
for u changing from 1 to −1. In Fig. 7, the line Lth+

and Lth− are the sets of points which are mapped by
F+andF−. Lth+ and Lth− are consistent with part of
the edge of the attractor. Here, we define the intersec-
tion point (xp1, zp1) of Lth+ and z = x+D as shown in
Fig. 7(a). (xp0, zp0) satisfy the following relationship.

xp1 = f+(xp0), zp1 = g+(zp0). (8)

Therefore, these points can be obtained exactly as fol-
lows.

xp0 = f−1
+ (xp1) =

−xp1+(A+1)

A
,

zp0 = g−1
+ (zp1) =

zp1−(B−1)C

B
,

(9)

xp1 =
−A(

D−(B−1)C
B

−D)+A+1

1+ A
B

,

zp1 =
B( D+1

A
+1+D)+(B−1)C

1+ B
A

.
(10)
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Figure 7: The line of the set mapping the point on the
threshold.

Figure 8: The edge of attractor

In addition, the point (xn1, zn1) as shown in Fig. 7(b)
can be determined as follows.

xn1 =
− A

B
D+ A

B
C−AC+AD−A−1

1+ A
B

,

zn1 =
B
A

D−B− B
A

+BD−BC+C

1+ B
A

,
(11)

where A = eδτ , B = eλτ and C = K
λ . We assume the

segment of a line between the start point (xp0, zp0)
and end point (xp1, zp1). We consider the mapping of
the set on the segment. The point (xp2, zp2) mapped
(xp1, zp1) by f+ and g+ is the corner of the attrac-
tor as shown in Fig. 8. It is possible to determine
all the edges of the attractor by repeating the same
procedure. There are two bifurcation phenomena as
changing the number of the piece and generation of
Islands. We consider the condition of these bifurca-
tion. Bifurcation is related to the unstable periodic
point (UPP) in the system and the shapes of attrac-
tor. We consider increasing D from 0. In Fig. 9(a)
and (b), the both attractors are 9-piece chaos. Islands
have occurred in the attractor in Fig. 9(b). Here, we
define the UPP (xan, zan,−1) as follows.

xan = f
n
2 −1
− ◦ f

n
2

+ ◦ f−(xan),
zan = g

n
2 −1
− ◦ g

n
2
+ ◦ g−(zan).

(n = 8, 12, ...). (12)

The UPPs exist in Islands. Note that the UPPs in
Island of Fig. 9(b) correspond to n = 8 of (12). Con-
sequently, each islands are referred to as n-island from
the corresponding UPP. Islands appear when UPP col-
lides to edge of attractor as shown in Fig. 9. The value
of D for bifurcation conditions can be calculated by
(11), (12) and (13).

zan + xan = zn1 + xn1. (13)
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Figure 9: Generation of Islands ((a)D = 0, (b)D =
0.4).
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Figure 10: 1-piece and 9-pieces chaos. ((a)D = 0.5,
(b)D = 0.7).

For the other n-Islands, the bifurcation conditions can
be obtained. In like manner, it is possible to obtain the
condition of dissipating of Island by noting to different
edge and UPP. Here, we focus on changing the number
of piece of attractor as shown in Fig. 10. This bifur-
cation also relates to UPP (xbn, zbn, 1) which satisfy.

xbn = f
n
2 −1

+ ◦ f
n
2
− ◦ f+(xbn),

zbn = g
n
2 −1
+ ◦ g

n
2
− ◦ g+(zbn).

(n = 4, 8, 12, ...). (14)

The corner point of the edge related to this bifurcation
can describe as follows.

xt = f2
− ◦ f+ ◦ f2

−(x1), zt = g2
− ◦ g+ ◦ f2

−(z1). (15)

Bifurcation occurs by the collision of the UPP and the
edge. Therefore, the value of D can be calculated by
(14), (15) and (16).

zbn − xbn = zt − xt. (16)

For the other other-piece chaos, the bifurcation condi-
tions can be obtained. In like manner, it is possible to
obtain the condition of changing the number of piece
by noting to different edge and UPP.
4.2. Bifurcation sets

We classify the shape of the attractor and depict the
bifurcation sets on parameter plane (D − δ). The bi-
furcation sets are shown in Fig. 11(a). In Fig. 11(a),
by increasing D, generation of n-Islands is observed on
the bifurcation set ISn, and dissipation of n-Islands is
observed on the bifurcation set IEn. POn is bifurca-
tion set from n-piece chaos to 1-piece, PSn is bifurca-
tion set from 1-piece chaos to n-pieces. In Fig. 11(b),
In is the existence region of n-Island and Pn is the
existence region of n-piece chaos.
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Figure 11: Bifurcation diagram

5. Conclusion

In this paper, we analyzed bifurcation phenomena of
4-D manifold piecewise linear system with hysteresis
characteristic by using an embedded return map. We
have derived the bifurcation sets and confirmed some
bifurcation of hyperchaos in laboratory measurements.
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[1] O. E. Rössler, “An equation for hyperchaos,” Phys.

Lett. A, vol. 71, pp. 155-157, (1979).

[2] X. Y. Wang and M. J. Wang, “A hyperchaos gener-
ated from Lorenz system,” Physica A, 387 (14) , pp.
3751-3758 (2008).

[3] T. Kapitaniak, L.O. Chua and G. Zhong, “Experi-
mental hyperchaos in coupled Chua’s circuits,” IEEE
Trans. Circuits Syst., I (41) , pp. 499-503 (1994).

[4] T. Tsubone and T. Saito, “Hyperchaos from a 4-
D Manifold Piecewise-Linear System,” IEEE Trans.
CAS-I, vol. 45, no. 9, pp. 889-894 (1998).

[5] Sharkovsky, A.N. and Chua, L.O., “Chaos in some 1-
D discontinuous maps that appear in the analysis of
electrical circuits,” IEEE Trans. CAS-I, vol. 40, no.
10, pp. 722-731 (1993).

[6] L. Gardini, D. Fournier-Prunaret and P. Charge,
“Border collision bifurcations in a two-dimensional
piecewise smooth map from a simple switching cir-
cuit,” Chaos, 21 (2), art. no. 023106, (2011).

[7] D. Fournier-Prunaret, P. Charge and L. Gardini,
“Border collision bifurcations and chaotic sets in
a two-dimensional piecewise linear map,” Commun.
Nonlinear Sci. Numer. Simul., 16 (2), pp. 916-927
(2011).
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