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Abstract—This paper presents a novel au-
tonomous chaotic system: the manifold piecewise lin-
ear system on the cylinder. This system is defined by
second order continuous flow on the cylinder with hys-
teresis switching and the trajectories do not diverge.
The system on the cylinder is equivalent to the systems
having infinite equilibria. This system can exhibit su-
per expanding chaos characterized by very large posi-
tive Lyapunov exponent. Presenting a simple test cir-
cuit, the super expanding chaos is confirmed experi-
mentally.

1. Introduction

The manifold piecewise linear system (MPL) is an
autonomous chaotic system that consists of second-
order continuous system and hysteresis switching of
the equilibrium points [1]-[3]. As the most impor-
tant characteristics of the MPL, it should be noted
that the dynamics is integrated into a piecewise lin-
ear one-dimensional return map and chaotic genera-
tion is guaranteed theoretically. The MPL is realized
by a simple electric circuit and chaotic behavior is con-
firmed in the laboratory. It should also be noted that
the chaotic behavior is applicable to engineering sys-
tems such as chaos-based communication and radar
systems [4][5]. Up to the present, a variety of au-
tonomous chaotic systems have been presented and
the dynamics have been analyzed [6]-[7]. These sys-
tems have been contributed to development of nonlin-
ear dynamical system theory and its engineering ap-
plications.

This paper presents a novel autonomous chaotic sys-
tem: the manifold piecewise linear system on the cylin-
der (CMPL). The CMPL is defined by second order
continuous flow on the cylinder with hysteresis switch-
ing and the trajectories do not diverge. The system dy-
namics on the cylinder is equivalent to systems having
infinite equilibria. Especially, the CMPL can exhibit
super expanding chaos characterized by very large pos-
itive Lyapunov exponent. In the MPL, the divergent
trajectory is inevitable and the super expanding chaos
is impossible. Presenting a simple test circuit, the su-
per expanding chaos is confirmed experimentally.

2. Manifold Piecewise Linear System

Here, we introduce the MPL as preparation to
present the CMPL. The MPL is defined by the fol-
lowing second-order piecewise linear system with hys-
teresis switching.

ẍ − 2δẋ + x =
{

p (A)
−p (B) , x ≡ (x, ẋ) (1)

This system has two equilibria ±p. In order to de-
fine the switching rule, we define the following two
segments

L2+ ≡ {x | x ≥ 0, ẋ = 0}
L2− ≡ {x | x < 0, ẋ = 0}. (2)

The right hand side is switched from (A) to (B) if
the trajectory hits L2+ and is switched from (B) to (A)
if the trajectory hits L2−. The MPL is characterized
by two parameters: damping δ, equilibrium point p.
For simplicity, we assume:

0 < δ < 1, (ω ≡ √
1 − δ2), p > 0 (3)

The system has unstable complex characteristic
roots δ±jω. The trajectory rotates divergently around
the equilibrium point p or −p. If the trajectory hits
L2+, the equilibrium point is switched from p to −p.

Figure 1: Switching of the MPL
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Figure 2: Trajectories. (a) Double-screw chaos for β =√
2, (b) Divergence for β = 2.6

If the trajectory hits L2−, the equilibrium point is
switched from −p to p. Note that the switching oc-
cur only on the x-axis. This system repeats in this
manner. As shown in Fig. 2 (a), the MPL exhibits
double-screw chaotic attractor. For convenience, we
use the following parameter β hereafter.

β ≡ e
δπ
ω > 1 (4)

If the trajectory does not diverge the MPL has a
positive Lyapunov exponent lnβ. Chaos generation is
guaranteed if

1 < β < 2 (5)

Fig. 2 shows typical trajectories where β is used as
a parameter instead of δ, for convenience.

3. MPL on Cylinder

We propose the CMPL based on the switching rule
of the MPL. As a preparation, we define the infinite-
screw MPL with infinite equilibria on x-axis. In order
to define switching rule, we define the following two
segment

Ln+ ≡ {x | 2nT < x ≤ (2n + 1)T, ẋ = 0}
Ln− ≡ {x | (2n − 1)T < x ≤ 2nT, ẋ = 0}
Ln ≡ Ln+ ∪ Ln−.

(6)

where n ∈ Z. The dynamics of the infinite-screw MPL
on Ln is described by

ẍ − 2δẋ + x =
{

p + 2nT (An)
−p + 2nT (Bn) , x ∈ Ln (7)

We consider the case: 0 < p < T . The right hand
side is switched to (An) if the trajectory hits Ln+ and
is switched to (Bn) if the trajectory hits Ln−. The
trajectory rotates divergently around the equilibrium
point p+2nT or −p+2nT . If the trajectory hits Ln+,
the equilibrium point is switched to p + 2nT . If the
trajectory hits Ln−, the equilibrium point is switched

Figure 3: Switching rules. (a) Infinite-screw MPL (b)
CMPL

Figure 4: Trajectories. (a) Chaos for β =
√

2, (b) Super
expanding chaos for β = 2.6

to −p + 2nT . The system repeats this switching. The
trajectory does not diverge in this system if β is finite.
The system can exhibit multi-screw chaotic attractor
as shown in Fig. 3(a).

We propose the MPL on cylinder (CMPL). The dy-
namics of the CMPL is equivalent to the dynamics of
the infinite-screw MPL.

If x hits Ln+, the right hand side is switched to (An)
and x jumps to x0 on L0+ where x0 ≡ (x + T ) mod
(2T )−T . If x hits Ln−, the right hand side is switched
to (Bn) and x jumps to x0 on L0+. The CMPL repeats
this manner. Fig. 3 (b) illustrates switching of the
CMPL. Note that the CMPL is characterized by three
parameters: damping δ, the equilibrium point p and
the circumference 2T . For simplicity, we consider on
the following parameter range:

1 < β < 3, p = T
2 = 1 (8)

The CMPL exhibits various chaotic phenomena as
shown in Fig. 4. The MPL for β ≥ 2 as shown in
Fig. 2(b). For β ≥ 2, the MPL exhibits divergent
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trajectory (Fig. 2 (b)), whereas the CMPL can exhibit
chaos (Fig. 4 (b)), this is the super-expanding chaos
characterized by very large Lyapunov exponent.

4. Laboratory Experiments

In order to observe the super expanding chaotic be-
havior, we have fabricated a simple test circuit as
shown in Fig. 5. The test circuit of an equivalent
to the CMPL. The test circuit is implemented by an
OpAmp, a mono-stable multivibrator (M.M.), a flip-
flop, and an analog switch. Here, v1 and v2 are ca-
pacitor voltages, Vth is a threshold voltage, and E is
an equilibrium point voltage. If v1 < 0 and v2 = 0,
an equilibrium point is switched from E to −E. If
v1 > Vth and v2 = 0, S1 is closed. The capacitor
voltage v1 jumps to v1 − 2Vth and equilibrium point
is switched from E to −E simultaneously. Repeat-
ing in this manner, we can define the switching from
−E to E. This switching is equivalent to the CMPL.
Figure 6 shows laboratory measurements. The data
corresponds to Fig.4. We have verified the super ex-
panding chaotic attractor for β ≥ 2 in the laboratory

Figure 5: An implementation example. (a) Test circuit.
(b) Switching circuit

Figure 6: Laboratory measurements. r1 � 1kΩ, r2 � 1kΩ,
R3 � 1kΩ, R4 � 5kΩ, R5 � 5kΩ, R6 � 1kΩ, Rs � 10kΩ,
C1 � 0.033μF, C2 � 0.033μF, Vth � 2V, E � 1V (a)Chaos
for β � √

2, R1 � 4.9kΩ, R2 � 10kΩ (b)Super expanding
chaos for β � 0.26, R1 � 5.1kΩ, R2 � 3.9kΩ

experiment as shown in Fig. 6(b).

5. Conclusions

In this paper, we have presented the CMPL. For β ≥
2, the trajectory diverges in the MPL. For β ≥ 2, the
CMPL exhibits super expanding chaos. The trajectory
does not diverge on the cylinder if β is finite. The
system can exhibit various chaotic attractor. Using
a simple test circuit, super expanding chaos attractor
can be verified in the laboratory experiment.

Future problems include analysis in wider parame-
ter range, development into higher order systems and
engineering applications.

- 805 -



References

[1] H. Fujuta and T. Saito, Continuous chaos represented
by a nonlinear ordinary differential equation with
manifold piecewise linear characteristics, in Proc. Int.
Wiss. Koll., A-1, Ilmenau, pp. 11-14, 1981.

[2] T. Saito and H. Fujuta, Chaos in a Manifold Piecewise
Liner System, Trans. IECE, 64-A, 10, pp. 827-834,
1981.

[3] T. Tsubone and T. Saito, Stabilizing and Destabi-
lizing Control for a Piecewise Linear Circuit. IEEE
Trans., CAS-I, 45, 2, pp. 172-177, 1998.

[4] N. Corron and J. Blakely, Chaos for Communication
and Radar, in Proc. NOLTA, pp. 322-325, 2011.

[5] N. Corron, M. Stahl, J. Blakely, Experimental Rang-
ing System Using Exactly Solvable Chaos. in Proc.
NOLTA, pp. 454-457, 2012.

[6] E. N. Lorenz, Deterministic nonperiodic flow. J.
Atom. Sci., 20, pp. 130-141, 1963.

[7] T. Matsumoto, L. O. Chua, M. Komuro, The Double

Scroll, IEEE Trans. CAS. 32, 8, pp. 798-818, 1985.

- 806 -


