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Abstract—To cope with ever-increasing size and com-
plexity of information networks, self-organization based
networking technologies draw increasing attention. In this
paper, we consider incorporating two control mechanisms
operating on different layers and having different objec-
tives, i.e. clustering and routing, in a wireless sensor
network. While each self-organization based control au-
tonomously accomplishes the targeted objectives, it does
not necessarily mean the desired performance is obtained.

Therefore, we introduce a mechanism of mutual interac-
tions among clustering and routing to improve the perfor-
mance as the whole system. Simulation results show that
sharing one parameter between clustering and routing.

1. Introduction

The rapid growth of wireless networks in size and
complexity makes traditional and conventional mecha-
nisms unsuccessful. To cope with emerging problems,
self-organization based networking technologies draw in-
creasing attention. Many successful attempts have been
made, especially taking an approach to be inspired by self-
organizing behavior of biological systems, e.g. [1]. How-
ever, most of them only consider application of a single bio-
logical model to a single networking problem. Apparently,
a single control mechanism cannot satisfy diverse requests
on networking and communication in a functional aspect
ranging from the lowest physical layer to the highest ap-
plication layer of a layered reference model and in a struc-
tural aspect from M2M wireless networks of tiny devices to
large-scale optical backbone networks. Therefore, we need
to consider incorporating multiple self-organization based
networking technologies, but much has not been known
about appropriate combination to achieve consistent, sta-
ble, robust, and adaptive control as a whole.

In this paper, we consider incorporating two self-
organization based networking technologies operating on
different layers and having different objectives. They are
clustering and routing in a wireless sensor network (Fig. 1).
Wireless networks are one of active areas of application of
self-organization based control algorithms, because char-
acteristics of unstable, unreliable, and bandwidth-limited
wireless communication make conventional and firm con-
trol infeasible.

Clustering makes clusters of sensor nodes, where each
cluster has one representative node called cluster head (CH)

and cluster members (CMs). Sensing data are gathered at a
CH from CMs and then sent to a sink node, i.e. collection
point of all sensing data, by the CH through inter-cluster
data forwarding. Since a CH consumes more energy than
CMs for reception and transmission of sensing data, roles
of CH and CM should be rotated to balance energy con-
sumption among nodes. Therefore, a primary concern of
clustering is balance of energy. On the contrary, routing,
in charge of establishment and maintenance of paths from
CHs to a sink, aims at lower delay and higher ratio of data
gathering.

As a basic algorithm of self-organization based cluster-
ing and routing, we use a mathematical model of biologi-
cal adaptation, called the attractor selection model [2]. The
model explains how anE.coli cell adapts to dynamically
changing nutrient condition of the environment. Each cell
autonomously regulates gene expression and synthesizes
appropriate nutrient to compensate deficiency of nutrients
in the environment. In [3], we applied the attractor selec-
tion model to routing in mobile ad-hoc networks and ver-
ified that our proposal outperformed a conventional mech-
anism and other bio-inspired mechanism in robustness,
adaptability, and performance. We can expect that attractor
selection-based clustering and routing autonomously and
adaptively accomplish the targeted objectives, i.e. energy
balance and data gathering performance.

However, we need to consider the fact that clustering
and routing intrinsically depend on each other. Paths that
routing establishes heavily depend on the structure of clus-
ters, which a clustering mechanism constructs. At the same
time, inter-cluster communication determined by a routing
mechanism puts an additional burden on CHs whose en-
ergy consumption changes depending on the location that
a CH exists in a path. As a consequence of independent
and autonomous behaviors of clustering and routing aim-
ing at maximization of their individual objectives, there is
a chance that they can find good solutions leading to the
near global optimization. However, convergence would
take time. In reality, they are more likely to interfere each
other and a whole system never converges. It considerably
degrades the performance and shortens the lifetime of a
wireless sensor network. Therefore, in this paper, we intro-
duce a mechanism of mutual interactions among clustering
and routing. In our proposal, they are combined by sharing
some control parameters. Differently from so-called cross-
layer architecture [4], where optimization is performed by
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taking into account states and parameters of multiple layers
at once, clustering and routing are loosely coupled while
leaving autonomy of mechanisms in our proposal.

2. Attractor selection model

The attractor selection model is in the form of a stochas-
tic differential equation combining a functionf (x), an ac-
tivity α (0 ≤ α ≤ 1), and a noise termη. The dynamics of
system statex is given by the following equation.

dx
dt
= f (x)α + η (1)

The statex can be either of a scalar or a vector. The func-
tion f (x) corresponds to a potential function defining at-
tractors. An attractor is a stable state where a dynamic sys-
tem governed bydx/dt = f (x) converges and stably stays.
The activityα is a scalar which expresses the goodness of
the current statex. When the statex is appropriate for the
current condition, the activityα is high. Multiplication of
f (x) andα reinforces or weakens the potential energy of at-
tractors. Together with the noise termη, a system exhibits
adaptive behavior.

With the largeα a system stays the current attractor sta-
bly. When the environmental condition changes andα be-
comes small, a system moves out of an attractor and takes
random walk being driven by the noise term. When a sys-
tem eventually approaches a new attractor, which is appro-
priate for the current condition, the activity begins to in-
crease. As a consequence the system state is entrained to
the new attractor. In summary, the attractor selection model
is a meta-heuristic algorithm to find a good solution de-
fined as an attractor. It combines deterministic nonlinear
dynamics and random search with mediation of the activity
as feedback.

3. Attractor selection-based clustering

Each nodei maintains activityαiC and a state vector⃗xi =

{xi,1, xi,2, ..., xi,M} where M corresponds to the number of
nodes in its vicinity plus one for nodei itself. xi,1 is a state
value of nodei. At the regular clustering interval ofTc, all
nodes conduct the following process. Nodei first evaluates
the clustering activityαiC by using the following equation.

αiC ← ρCαiC + (1− ρC)
mink∈CHi rk

maxj∈Ni r j
, (2)

whereNi is the set of neighbor nodes additionally including
nodei, r j =

ResidualEnergyj
Capacityj

is the ratio of residual energy to
the capacity,CHi is the set of CHs and nodei. For the
purpose of advertisement of energy condition as well as
neighbor discovery and maintenance, each node broadcasts
hello messages at regular intervals ofTh. ρC (0 ≤ ρC ≤ 1)
is a smoothing coefficient.

Figure 1: Layers of clustering and routing control

Next, nodei updates the state vectorx⃗i by,

dxi, j

dt
=

αiC

(
1√
2
+ βα

γ
iC

)
1+ x2

i,max− x2
i, j

− αiC xi, j + ηi, j (1 ≤ j ≤ M), (3)

wherexi,max= max{xi, j}, β = 20, andγ = 10. The termηi, j

is Gaussian white noise with mean 0 and variance 1.
Then, nodei sets its backoff timer ti as

ti = Tmax

√
1− xi,1, (4)

whereTmax is the maximum waiting time of CH election.
When the backoff timer ti expires, nodei broadcasts a
cluster-head claim (CHC) message to all of its neighbors
and becomes a CH. Hearing the CHC message, other nodes
in the range of broadcasting cancel their backoff timers and
become CMs of CHi.

If non-CH nodej receives several CHC messages during
Tmax+ Tg from the beginning of the current clustering pro-
cess, it becomes a gateway node (GW). It mediates inter-
cluster message forwarding. GWj multicasts a gateway
claim (GWC) message to neighbor CHs to inform its exis-
tence. AtTu > Tmax+ Tg from the beginning of the current
clustering process, all nodes update lists of CHs and GWs
used for routing based on a result of clustering.

4. Attractor selection-based routing

At regular intervals ofTd, sensing data are gathered from
all nodes to a sink. First each of all CMs and GWs sends
sensing data to its designated CH. AtTa from the begin-
ning of the current data gathering, CHi aggregates received
sensing data together with its own and selects a GW to send
the aggregated data.

For the sake of routing, independently of the role, i.e.
CH, GW, or CM, nodei maintains another set of activity
αiR and state vector⃗yi = {yi,2, yi,3, ..., yi,M}. They are eval-
uated and used only when nodei is either of CH or GW.
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Furthermore, evaluation of the attractor selection model is
performed once per data gathering cycle. Now consider the
behavior of a CH. A GW also conducts the similar process
where GW and CH are interchanged in the following de-
scriptions.

When there is a single GW having the smallest hop
counts to a sink (HoTS) among neighbor GWs, it is se-
lected as a next hop without evaluating the attractor selec-
tion model. Here, we assume that HoTS is initialized and
maintained by using regularly exchanged hello messages or
periodic flooding of control messages. When there are two
or more GWs with the smallest HoTS, CHi first evaluates
the routing activityαiR using the following equation.

αiR ← ρRαiR + (1− ρR)
mind
dlatest

, (5)

wheredlatest is the delay in the latest data gathering and
mind is the minimum delay in the past data gathering. So
that CHs and GWs can obtain delay information, at each
T f from the beginning of the current data gathering, a sink
sends a feedback message by flooding. A feedback mes-
sage contains a list of reception time of all data messages it
received in the previous period ofT f . ρR (0 ≤ ρR ≤ 1) is a
smoothing coefficient.

Next, CHi updates a state vector as,

dyi, j

dt
=

αiC

(
1√
2
+ βα

γ
iC

)
1+ y2

i,max− y2
i, j

− αiRyi, j + ηi, j (1 ≤ j ≤ M). (6)

Differently from clustering, CHi only updates state values
of neighbor GWs. Then, CHi sends an aggregated data
message to a GW with the largest state value.

When CHi receives a data message to forward from a
neighbor GW, it first evaluates the attractor selection model
if it is not done in the current data gathering cycle and se-
lects a GW with the largest state value as a next hop. In
message forwarding, a GW from which it received a mes-
sage is excluded from next-hop candidates unless it is only
neighboring GW.

5. Incorporation of clustering and routing

In [5], we consider interaction between layered routing
mechanisms in a hierarchical wired network. Each of inter-
domain and intra-domain routing mechanisms performs au-
tonomous and adaptive routing based on the attractor se-
lection model. To have explicit mutual interactions, they
share activity values among layers by additionally multi-
plying the activity of the other layer to functionf (x) in Eq.
(1). With such coupling, a routing mechanism of each layer
tries to maximize both activities. In this paper, we take the
same approach.

Since clustering takes into account only energy balanc-
ing, there is possibility that disconnected cluster structure

is formed. Whereas there is a variety of coupling, we con-
sider routing-aware clustering. It is accomplished by re-
placingαiC with αiCαiR in Eq. (3). As a result of the loose
coupling, it is expected that clustering is performed so as to
guarantee the connectivity by maximization of objectives
of both of clustering and routing.

6. Evaluation

We evaluate the proposal from viewpoints of data gath-
ering ratio, data gathering delay, and energy consump-
tion. The data gathering ratio is defined as the ratio of
the number of sensing data which a sink receives in data
gathering intervalTd to the number of data messages that
all nodes except for a sink sent inTd. The data gather-
ing delay is defined as time taken for a data message to
reach a sink from a CH. Finally, the energy consumption
is evaluated by the fairness index [6], which is defined as
(
∑n

i=1 r i)2/(n
∑n

i=1 r2
i ). n is the number of nodes.

We randomly distributed 20 immobile nodes in the re-
gion of 500×1000m2. Nodes communicate with each other
within the range of 250 m by IEEE 802.15.4. Simulations
are conducted by using OMNet++ [7] and each simulation
time is 20000 s. Other parameters are set asTmax = 0.5s,
T f = 2s, Td = 5s, Th = es, Tc = 1000s, Tu = 1.5s,
Tg = 0.05s, Ta = 0,4s.

We here and after call a scenario where clustering and
routing independently operate“Independent” and a combi-
nation of routing-aware clustering and routing“Coupled”.

Figure 2 and 3 show the data gathering ratio of Indepen-
dent and Coupled in a set of simulation runs, respectively.
Whereas there are sudden drops in the data gathering ratio
due to disconnected cluster topology, Coupled achieves the
stably higher data gathering ratio in the latter half of simu-
lation time than Independent. As a result, the fairness index
of energy decreases from 0.9903 (Independent) to 0.9893
(Coupled), but the sacrifice is small.

Next Fig. 4 compares the data gathering delay. They dif-
fer little from each other because organized cluster topol-
ogy does not differ much as far as it guarantees the connec-
tivity. Within each data gathering interval, the data gather-
ing delay fluctuates very much. It is because of stochastic
behavior of the attractor selection model. We can expect
that the delay converges to a smaller value when we have a
longer data gathering interval giving the sufficient time for
convergence. We can also accelerate convergence by using
smallerγ in Eq. (3).

Finally, Fig. 5 illustrates the data gathering ratio aver-
aged over 10 simulation runs. Because of the small number
of simulation runs, the data gathering delay fluctuates but
fluctuation is smaller in Coupled. It means that incorporat-
ing clustering and routing by loose coupling leads to stable
data gathering.
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Figure 2: Data gathering ratio (Independent)
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Figure 3: Data gathering ratio (Coupled)
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Figure 4: Data gathering delay

7. Conclusion

In this paper, we propose incorporation of self-
organization based clustering and routing for a wireless
sensor network. To achieve better performance, we intro-
duce explicit but loose mutual interaction among those con-
trol mechanisms. We conducted simulation experiments
and verified our proposal. We plan to consider further per-
formance improvement by fine-tuning of control mecha-
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Figure 5: Average data gathering ratio

nisms. Furthermore, we will investigate other scenarios
such as interaction between self-organization based mech-
anisms operating on the same layer. Then, we will de-
rive a design principle of combination of multiple self-
organization based networking technologies from the ob-
tained results.
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