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Abstract– Given a known dataset to learn a latent 

variable model, previous methods fail to focus on how to 

get labeled samples, some just choosing them randomly. 

As a result, it is likely that those methods gain models with 

a very limited representation capability. In this article, we 

propose a novel method in which we select representative 

samples to be labeled ones for latent variable models. To 

this end, the G-means clustering algorithm is adopted to 

automatically cluster latent variables and obtain those 

corresponding representative samples. We learn the 
Gaussian Process Latent Variable Model (GPLVM) and the 

Constrained Latent Variable Model (CLVM) respectively 

combined with the G-means, and compare them to those 

without clustering, in the context of non-rigid 3D 

reconstruction from monocular images. Our experimental 

results show that our methods present a more powerful 

representation capability. 

 

1. Introduction 

 
Latent variable techniques provide the substantial 

insight into the inherent structure of complex data. Latent 

Variable Models (LVMs) are commonly applied to learn 

the appropriate models from training data, since they can 

project the high-dimensional data into a low-dimensional 

space and represent unknown mappings by learning. The 

authors in [1] propose a generative LVM for dependency 
parsing. [2] presents a scalable parallel framework for 

efficient inference in LVMs over streaming web-scale 

data. [3] introduces a method for Gaussian Process 

Classification using LVMs trained with discriminative 

priors over the latent space. [4] combines sparse 

approximations with GPLVM [5,6] and achieves better 

quality on a benchmark visualization data set. GPLVM is 

used to deal with the trouble of high dimensionality in the 

space of possible deformations in [7]. In [8], the GPLVM 

is used to learn local deformation models from data. [9] 

has proposed a new model CLVM, and made the GPLVM 

as a comparison. CLVM [9] really gains improvements 

over GPLVM on the problem of non-rigid 3D 

reconstruction from monocular images.  

 Although these LVMs perform well, we think that the 

generating LVMs will be more effective if we are able to 

select representative samples to be labeled samples. Given 
a dataset with vast samples, there is a need to select 

representative samples with an appropriate method as 

labeled ones since there must be many whose intrinsic 

attributes are similar. If we just choose labeled samples 

randomly, the probability will increase that some whose 

intrinsic attributes are similar are chosen as labeled 

samples. If all the labeled samples have similar attributes, 

which of course is the worst situation, the model will only 

adapt to prediction in a very small range. Clustering can 

be used to get labeled samples. G-means [10] assumes that 

subsets of data follow the Gaussian distribution, which we 

think is applicative to the data we will use in the latent 
space. In fact, due to the advantage of low dimensionality 

in latent space, the G-means expenses little additional cost 

of time. Therefore, it’s a good choice to make use of the 

G-means to obtain labeled samples. 

More specifically, we make use of the G-means to 

cluster latent variables obtained by Principal Component 

Analysis (PCA) or other dimensionality reduction 

techniques. Those latent variables closest to clustering 

centers are taken to be labeled samples. We then learn the 

LVMs using these labeled samples. This method can 

ensure that labeled samples are as far different from each 

other as possible in the latent space. Consequently, the 

resulting model can represent a wider range of shapes as 

to the problem of monocular non-rigid 3D shape recovery. 

By introducing the G-means to LVMs, we can improve 

the performance of LVMs. We have demonstrated the 

effectiveness of the LVMs combined with clustering on 
synthetic data in the context of non-rigid 3D shape 

recovery from monocular images. The LVMs combined 

with clustering do outperform the original LVMs. 

 

2. LVMs combined with clustering 
 

2.1. Latent Variable Models 
 

Given a dataset full of varieties of available data Y, the 

first thing is to get latent variables X. Here, Y is a matrix 

which contains all the obtained samples in a high 

dimensional space and X is a matrix which contains all the 

corresponding latent variables in a low dimensional space. 

We use PCA to obtain the latent variables matrix X. 

 

2.1.1. GPLVM 

 
First, n training pairs of samples and corresponding 

latent variables [(𝒙1 , 𝒚1),… , (𝒙𝑛, 𝒚𝑛)]  are randomly 
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chosen from Y and X. And then, the goal is to predict the 

output 𝒚′ = 𝑀(𝒙′)  from a novel input 𝒙′ . Let 𝒀𝐿 =
[𝒚1 , … , 𝒚𝑛]

𝑇 , 𝑿𝐿 = [𝒙1, … , 𝒙𝑛]
𝑇. The likelihood 

 (𝒀 |𝑿 ,  ) =
1

√(  )  | | 
   ( 

1

 
  (  1𝒀𝐿𝒀𝐿

𝑇))    (1) 

where K is the kernel matrix whose elements are defined 

by the covariance function, 𝑘(𝒙𝑖, 𝒙𝑗). Here, we take this 

function to be the sum of a RBF and a noise term: 

𝑘(𝒙𝑖 , 𝒙𝑗) =  1    ( 
  

 
(𝒙𝑖  𝒙𝑗)

𝑇
(𝒙𝑖  𝒙𝑗))         (2) 

GPLVM is learnt by maximizing  (𝒀𝐿|𝑿𝐿 ,  ) ( ) with 

respect to  .At reference, given a latent variable 𝒙′, the 

mean prediction can be expressed as 

                           (𝒙′) = 𝒀𝐿
𝑇  1 (𝒙′)                          (3) 

where  (𝒙′) = [𝑘(𝒙′, 𝒙1), … , 𝑘(𝒙
′, 𝒙𝑛)]

𝑇 . 𝒚′ is taken to 

be this mean prediction. 
 

2.1.2. CLVM 

 

The CLVM explicitly imposes equality or inequality 

constraints on the model’s output during learning. 

Actually, 𝑚  unlabeled latent variables are randomly 
chosen from X to be used to impose constraints. 

Let 𝑿 = [𝒙1
 , … , 𝒙 

 ] , denoting 𝑚  unlabeled latent 

variables. The latent variable model can be written as 

𝒚′ =  (𝒙′).                                 (2) 

The learning can be formulated as the constrained 

optimization problem  

     
1

 
||  (𝑿𝐿)  𝒀𝐿|| 

  
 

 
|| || 

               (3) 

         (  (𝑿 )) =  ,   , (  (𝑿 ))   , 

where  (𝑿𝐿) = [ (𝒙1),… ,  (𝒙𝑛)]. 
By solving this problem with Lagrange multiplier 

method and introducing kernel function, we can finally 

get the prediction for an input 𝒙  in closed-form as 

𝒚 =    ,                                      (4) 

with 

 = [  ∑   
𝑇

     , ] 
 1,  = [ (𝑿𝐿), (𝑿 )],    (5) 

 =   ,𝐿 𝐿,     ,  ,                =  𝐿 𝐿, , 

where 𝐊  , = [  ,𝐿 ,   , ]
𝑇,   , =   𝑇 = [

 𝐿,𝐿  𝐿, 

  ,𝐿   , 
]. 

 

2.2. The G-means Algorithm 
 

The G-means algorithm [10] circularly runs K-means 

with initial cluster centroid positions, whose data have 

undergone a statistical test, till all the subsets of data 

follow Gaussian distribution. Hence, at the heart of the G-

means algorithm is the statistical test for the hypothesis 

that a subset of data follows Gaussian distribution. 

The statistical test is a process in which decisions are 

made whether the cluster should be split into two sub-

clusters or not. Anderson-Darling statistic test is used. 

Assuming that c is a center whose cluster is about to 

undergo the statistical test, the algorithm of the statistical 

test is as follows. 

1. Initialize two centers with 𝒄 ±𝒎 , where 𝒎 =

𝒔√2𝜆/𝜋, which is obtained by doing PCA on X, data of 

the center c, 𝒔  being the main principal component 

corresponding to eigenvalue 𝜆. 

2. Run k-means on the above two centers in X and get 

two new centers, 𝒄1 and 𝒄 . 

3. Let vector 𝒗 = 𝒄1  𝒄  and then project X onto 𝒗: 

𝑥’ =< 𝒙, 𝒗 >/||𝒗|| . Transform 𝑋’ into Y so that it has 

mean 0 and variance 1. 

4. Let 𝑧 = F(𝑦) , where F is the 𝑁( , 1)  cumulative 

distribution function. The Anderson-Darling statistic is 

 2( ) =  
1

 
∑ (2  1)[   𝑧      (1 𝑧  1  )]   
 
 =1  

(8) 

and the corrected one is 

  
 ( ) =   ( )(1  /  2 /  )               (9) 

5. If   
2( ) is lower than the critical value, keep the 

original center c; if not, keep 𝒄1 and 𝒄  instead of c. 
 

2.3. LVMs combined with clustering for Non-rigid 3D 

Reconstruction 
 

The essence of LVMs combined with clustering is to 

take advantage of the G-means to automatically obtain 

representative samples as labeled samples for LVMs. The 

procedure of the LVMs combined with clustering for non-

rigid 3D reconstruction is as follows: 

1. Given a dataset Y representing 3D shapes, randomly 

choose M test samples 𝒀𝑇 . Perform PCA on the rest 

samples  𝒀  to get latent variables X. 𝑿  corresponds to 

𝒀 . 𝑿𝑇  contains test latent variables. 

2. Cluster 𝑿  with G-means according to subsection 

2.2. Choose the latent variables closest to the clustering 

centers in 𝑿  to be N labeled latent variables 𝑿𝐿 , the 

corresponding 𝒀𝐿  to be labeled samples. Choose V 

unlabeled latent variables 𝑿  randomly from the 

remaining latent variables specially for the CLVM. 

3. Learn GPLVM and CLVM according to Eq. (2) and 

Eq. (7) respectively. 

4. Predict test samples according to Eq. (3) and Eq. (6) 

respectively. As a test, 𝑿𝑇  can be known latent variables 

to predict shapes 𝒀𝑇
′ . During simulating reconstruction, 

optimized latent variables can be used to predict the 

shapes 𝒀𝑇
′ . The mean of reconstruction errors between 𝒀𝑇

′  

and 𝒀𝑇 can judge the performance of models. 
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The optimization is necessarily used to reconstruct. 

Now let’s see the process of the optimization in brief. First 

a latent variable is initialized with some knowledge or by 

intuition. Then we iteratively obtained the prediction of 

the 3D shape with LVMs and minimized the reprojection 

error. The optimization can be written as 

   𝒙∑ ||(  
′,   

′)  (  ,   )|| 
 

                      (10) 

where ( 𝑖
′,  𝑖

′) and ( 𝑖 ,  𝑖) are the reprojection and the real 

location of the input image’s  th feature point. The details 
of solution to reprojection can be found in [11]. 

 

3. Experimental Results 
 

We verified the effectiveness of LVMs combined with 

clustering when applying it to non-rigid 3D reconstruction 

from a single camera. For all the experiments, we made 

use of the cardboard dataset and the cloth dataset which 

had been employed in [9].  

 

3.1. Variations of Errors on LVMs combined with 

clustering 
 

For both datasets, we first chose M=300 test samples, 
then clustered the latent variables of the rest samples with 

G-means to attain labeled samples, and finally chose V=50 

unlabeled samples for CLVM. We learnt CLVM as well as 

GPLVM and predicted 300 shapes of the test samples with 

known latent variables obtained by PCA.  Equality 

constraints were used here. Varying the critical value and 

maintaining the unlabeled samples unchanged, we 

observed the variations of the mean reconstruction error 

over the 300 test samples and the number of labeled 

samples with the critical value. Fig.1 gave the variations. 

It can be observed from Fig.1 that the mean 

reconstruction errors roughly showed a trend of increase 

with the critical value, which meant that a lower critical 

value resulted in a better model. However, there was a 

truth that when the critical value increased, the number of 

labeled samples decreased, which was beneficial to 

lowering the computational burden. So a balance lay 
between the quality of models and the computation cost. 

 

3.2. Comparison to LVMs without Clustering 
 

We picked an appropriate critical value 60 to do the 

following experiments.  

 

3.2.1. Prediction with Known Latent Variables 

 

A comparison was made between two original LVMs 

(GPLVM and CLVM) and LVMs combined with 

clustering (GPLVM combined with clustering and CLVM 

combined with clustering) using known latent variables.  

We still used M=300 test samples and V=50 unlabeled 

samples. For the LVMs combined with clustering, indices 

of labeled samples derived from the G-means, and the 

 
Fig.1. Variations of the mean reconstruction error and the 
number of labeled samples with the critical value for the 

cardboard (left) and the cloth (right).  

 
Table 1. Comparison between the original LVMs and the LVMs 

combined with clustering when predicting shapes from known 
latent variables 

 
Equality Constraints Inequality Constraints 

R.E. C.E. R.E. C.E. 

ca
rd

b
o

ar
d

 

GPLVM 
2.9791 

±0.2056 

0.8852 

±0.0525 

2.9791 

±0.2056 

0.8646 

±0.0535 

with clustering 2.4973 0.7566 2.4973 0.7366 

CLVM 
2.7459 
±0.1631 

0.6309 
±0.0664 

2.9026 
±0.1708 

0.7457 
±0.0446 

with clustering 2.3719 0.6221 2.4577 0.6824 

cl
o

th
 

GPLVM 
7.1611 

±0.2603 

1.5163 

±0.1098 

7.1611 

±0.2603 

0.9041 

±0.0862 

with clustering 6.4033 1.3906 6.4033 0.8648 

CLVM 
7.4518 

±0.2697 

0.9268 

±0.0931 

7.1061 

±0.1963 

0.6520 

±0.0599 

with clustering 6.8238 0.9045 6.3690 0.6345 

 

number N was 47 for the cardboard and 15 for the cloth. 

For the original LVMs, we performed 20 times learning 

with only labeled samples randomly chosen every time 
and with the test and unlabeled samples maintained the 

same as LVMs combined with clustering, and predicted 

with known test latent variables every time, taking the 

mean values and the standard deviations over 20 times 

results of mean reconstruction and constraint errors of 300 

predictions. Equality and inequality constraints were 

imposed respectively. Table 1 presented the comparison 

about the reconstruction and the constraint errors. 

The comparison clearly pointed out that reconstruction 

errors and constraint errors of the LVMs combined with 

clustering were never outside the range of those of the 

original LVMs. In fact, all the errors of the LVMs 

combined with clustering were lower than the mean 

values of the original LVMs. This revealed that the LVMs 

combined with clustering could improve the performance 

of original LVMs in nature. 

 
3.2.2. Reconstruction with Optimized Latent Variables 

 

We now generated synthetic data for both datasets. 

1000 random points were spread on each mesh-

represented shape to be 3D feature points. We specified 

their barycentric coordinates. 2D locations of the 3D 

feature points could be created by projection. We then 

added Gaussian noise with standard deviation 1 to these 

2D locations. Having owned the synthetic data, we could 

use them to optimize latent variables. For this part, we just 

performed 5 times learning for the original LVMs since 

we took it into account that the process of optimization 
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Table 2. Comparison between the original LVMs and the LVMs 

combined with clustering when reconstructing the shapes with 

the optimized latent variables 

 
Equality Constraints Inequality Constraints 

R.E. C.E. R.E. C.E. 

ca
rd

b
o

ar
d
 

GPLVM 
3.3470 
±0.1814 

0.9690 
±0.0414 

3.4804 
±0.1765 

0.9301 
±0.0465 

with clustering 2.9379 0.8380 2.9379 0.7913 

CLVM 
2.9032 

±0.0892 

0.7664 

±0.0524 

3.2640 

±0.1633 

0.8469 

±0.0433 

with clustering 2.4912 0.7520 2.8599 0.7776 

cl
o

th
 

GPLVM 
8.0354 

±0.2738 

1.7189 

±0.0681 

8.0354 

±0.2738 

1.2257 

±0.1050 

with clustering 6.9284 1.7362 6.9284 1.1490 

CLVM 
7.2406 

±0.2174 

1.6788 

±0.0974 

7.9362 

±0.2560 

1.0760 

±0.1203 

with clustering 6.4653 1.5678 6.8498 0.9488 

 

was rather time-consuming. Labeled, test and unlabeled 

samples were chosen in the same way with the part 3.2.1. 

As observed from Table 2, nearly all the errors of the 

LVMs combined with clustering were smaller than the 

mean of errors of the original LVMs. That was to say, the 

LVMs combined with clustering gained improvements 

during the optimization which was a necessary process in 
the real situation. Therefore, we could draw a conclusion 

that the LVMs combined with clustering had advantages 

over their original ones. Fig. 2 showed shapes of a frame 

of deformation for the cardboard and the cloth. The shapes 

were reconstructed with equality constraints for the 

cardboard and inequality constraints for the cloth. 

 

4. Conclusion 
 

In this paper, we presented LVMs combined with 

clustering. The G-means clustering algorithm was 

introduced into LVMs. In theory, the LVMs combined 

with clustering can predict in a wider range, thus 

performing better. We conducted experiments on the 

cardboard dataset and the cloth dataset and compared the 

LVMs combined with clustering to the original ones, 

GPLVM and CLVM, in the context of monocular non-
rigid 3D reconstruction. The results demonstrated the 

effectiveness of the LVMs combined with clustering. In 

future work, it is worth considering how to give a good 

initial latent variable during the optimization. 
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