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Abstract—For its simplicity and effectiveness, star
model is popular in part-based object detection and lo-
calization. It finds the candidates for parts and then vote
for object’s configurations. However, it suffers from the
loose geometric constraints since it neglects the connection
among parts. In the paper, we reconsidered the connections
and reduce the task of object detection and localization to a
shape matching problem. We propose to use a global shape
as a constraint to modify the star model. The resulting rep-
resentation is then a 2-fan model that is subsequently opti-
mized by searching for the candidates of parts and solving
for the global constraint. Though the procedure is easily
stuck at a local optimum, results show that is gives a com-
parable result with the state-of-art methods.

1. Introduction

Many problems in computer vision concerns matching a
given shape template. It has served as the core part in many
visual applications, such as object detection[8, 10, 12, 11],
human pose estimation[9] and so on. On the other hand,
shape matching is yet challenging; occlusion, cluttered
backgrounds, and the non-rigid deformation all make it a
relatively hard task.

A shape is usually represented by a set of contours; each
is a point sequence U : {u(t) = (xu(t), yu(t))′} where t is
the index starting from 1. For simplicity, the discussion fo-
cuses on U with a single sequence, and extension to that
with multiple ones is straightforward. Throughout the pa-
per, we use an uppercase letter for planar shape, the cor-
responding bold lowercase letter for its point and |U | for
the length. For example, the last point of planar shape U
is u(|U |), whose x coordinate is xu(|U |), and y coordinate
is yu(|U |).The second shape V comes from the given im-
age. It contains a set of contour fragments. To distinguish
the fragments in V , we introduce a vector b that stores the
index range. The range for cth fragment is [bc, bc+1). We
give an example of V in Fig.1, where fragments are dis-
criminated by color.

When both U and V are represented by the contour frag-
ments, shape matching is then to select a subset of con-
tour fragments from V which can best explain the given U.
However, selecting the contour fragments involves a com-
binatorial optimization[10, 12] that is usually NP-hard. To
get rid of combinatorial explosion, we propose to localize
the parts of a hypothesis via the local matching and use in-

Figure 1: Linked contour fragments and the original image
from ETHZ dataset[5].

terconnection to force the selected parts along the same or
adjacent contours, resulting in a 2-Fan shape model.

The model is then formulated, optimized and analyzed
in the following sections. In Section 2, we derive a brief
reivew on the related works, then formulate the shape
matching based on 2-fan shape model in Section 3. The
subsequent Section 4 is then devoted to the optimization.
Section 5 presents the experimental evaluations and analy-
sis followed by conclusions drawn in Section 6.

2. Related Works

The proposed representation belongs to part-based
model. Unlike the methods that treat the shape as a
whole[2, 9], it represents the shape as a collection of parts.
A part-based model usually involves the description of the
local parts, the definition of connections among parts, and
the use of bottom-up heuristics.

Taking the generalized hough transform (GHT)[1] for
example, it is the pioneering work in part-based shape
matching. In GHT, each boundary point corresponds to a
part, that is described by the edge orientation. Parts are
connected to a reference point, resulting in a star model.

After decades of development, the star model used by
GHT is still among the most popular ones for part-based
shape matching. However, its voting style is substituted by
a minimizing way, named the Hough-like voting. Usually,
the voting scheme implies that an object is represented by a
set of parts, and for each instance of the object, a part only
accepts the candidate with minimum error. Model built by
the assumption includes the implicit shape model (ISM)[8]
and is adopted by many recent works[8, 13, 12]. Ferrari et
al.[6, 5] proposed a family of scale invariant local shape de-
scriptors which linked groups of adjacent segments of con-
tour. The descriptors are then combined with the Hough-
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style voting scheme for object detection[5]. Praveen et
al.[12] used shape context[3] to describe the part, and
adopted the Hough-like voting for the hypotheses.

As for part description, there are many choices. Pop-
ular ones include shape context[3], distance transform[2]
including the oriented chamfer distance[13, 9] and so on.
A detailed survey can be found in [15].

The third aspect of part-based shape matching is about
the bottom-up heuristics. The first heuristics that should be
mentioned is the use of contour fragments. Majority of the
the recent methods[12, 9, 6, 5] manipulate the contour frag-
ments instead of edge points. Based on contour fragments,
Ferrari et al.[6, 5] propose to use the spatial adjacency and
Praveen et al.[12] requires that a contour fragment either
belongs to an instance or is irrelevant to it.

3. Problem Formulation

The idea that lies that at the core of our methodology is
to resolve the partial correspondence between both shapes.
We split U into a set of overlapped pieces as shown in
Fig.2(a). The kth piece is denoted by Uk, whose index
range is Rk = [lk, hk]. We select the start point of each
piece as the anchor point and move the mass point of U to
the origin.

uk′

Uk′

lk

uk

Uk

lk′

(a)

.. 1.

2

.

3

.

4

.

5

.

6

.7 .

o

.

Û
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Figure 2: (a).Representation of U, (b).2-fan shape model.

The task that matching U to V should determine U’s
scale, position and orientation in the image. The combi-
nation of scale, position and orientation is referred to as the
pose of an object.

In practice, we discretize the parameter space for object
poses through sampling a set of scaling factors and rotation
angles and using the grid locations of the image domain
for the object center o. For the sake of brevity, we neglects
the influence of scale and rotation, and assumes that both
factors have been excluded by scaling and rotating V corre-
spondingly. Then the transformed coordinate is simplified
as u + o where u is a point from U. Next, we assume that
the object center o is known, and use U for U(o).

The partial correspondence between the kth piece of U
and V is described by a function ωk. For convenience, we
call ωk the selection function. It has the same index range
as Uk, and produces a sequence from V ,

v(ωk(lk)), · · · , v(ωk(hk)). (1)

A feasible ωk then determines a matching candidate for
piece Uk.

lk

uk

Uk

lkωk(lk)
lkωk(lk)

Figure 3: The two operations for warping Uk to V .

With the selection function, we define a dissimilarity
measure that is derived from warping Uk to the point se-
quence in Eq.1. The warping undergoes two sequential op-
erations. The first one displaces the segment such that its
anchor point is aligned with v(ωk(lk)). The second one op-
erates on the displaced segment, registering its points to the
counterparts in Eq.1.

Energy for displacing the segment is given by,

Ek,g(ωk, o) = λg|Rk | · ‖v(ωk(lk)) − u(lk) − o‖2. (2)

where v(ωk(lk))− (u(lk) + o) is the offset required for align-
ing the two anchor points, and the unit λg changes the
squared moving distance to the energy. After the operation,
we get the displaced piece of Uk with each of its points dis-
placed to u(t)−u(lk) + v(ωk(lk)). Energy for the second op-
eration calculates the total distance between the displaced
piece and that in Eq.1.

Ek,l(ωk) =

uk∑
t=lk

‖u(t) − u(lk) − v(ωk(t)) + v(ωk(lk))‖ρ . (3)

The metric ‖ · ‖ρ is the truncated Euclidean distance: ‖ ·
‖ρ = min(‖ · ‖, ρ), where ρ bounds the Euclidean distance
from above. We adopt the metric for suppressing noises
and removing the outliers. In addition, we require that ωk

preserves the order of contour fragments.
The isolated way for defining selection functions breaks

the interconnections among the overlapped segments.
Therefore, we introduce an auxiliary shape Û that connect
the parts via the energy in Eq.4.

Z({ωk}, Û) =
∑

k

hk∑
t=lk

‖û(t) − v(ωk(t))‖2. (4)

The auxiliary shape Û has the same domain as U.Without
the prior information, it is reasonable to ensure that shape
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Û is smooth. Assuming that the selection function for each
segment is known, an optimal Û can be inferred by fitting
a smooth contour.

The objective function measures the similarities of all
pieces, at the same times, penalizes the inconsistent case.

O({ωk}, Û, o) =
∑

k

Ek(ωk, o) + λsZ({ωk}, Û), (5)

where λs denotes the weight of the smoothing term.
With the graph representation, we get a 2-fan shape

model as shown in Fig.2(b). In the model, parts are not
connected to each other directly, while they are all linked
to the pose parameter o and auxiliary shape Û. Given Û
and o, parts are conditionally independent, and their selec-
tion functions can be optimized one by one with dynamic
programming.

4. Dynamic Programming For Selection Function

In objective function, the terms involving ωk are summa-
rized as,

Ok(ωk, Û, o) = Ek,l(ωk) + Ek,g(ωk, o) + λsZk(ωk, Û) (6)

where, Zk(ωk, Û) =
∑hk

t=lk
‖û(t) − v(ωk(t))‖2. Fixed Û, the

evaluation of ωk is independent of others, hence, ωk can be
optimized on its own. Since Ek,g(ωk, o) only depends on
ωk(lk), thus the optimization for ωk can be further decom-
posed shown as follows.

min
j

Ek,g( j, o) + min
ωk∈Ω j

(
Ek,l(ωk) + λsZk(ωk, Û)

)
, (7)

where j takes value from the indexes of V , Ek,g( j, o) =

λg|Rk | · ‖v( j) − u(lk) − o‖2; and Ω j is the space of order
preserved ωk starting with j. The minimization with re-
spect to j can be implemented by traversing the indecies of
V , thus the left task is to optimize Ek,l(ωk) + λsZk(ωk, Û)
with respect to ωk ∈ Ω j.

According to the definition of order preserving, the se-
lection function goes either decreasingly or increasingly.
The property ensures that the minimization can be solved
by dynamic programming. For fast implementation, we
restrict the optimization along the contour containing the
starting point v( j), demanding that the selection function
ωk selects points from the same contour.

5. Experimental Evaluations

Experiments were conducted on the ETHZ shape
dataset[5]. There are 255 test images from 5 categories in
the dataset, and we followed the same experimental setup
in [9] and used a single shape to detect and localized its
instances. We use the method proposed in [14] to initialize
a set of poses. For each pose, we refine the auxiliary shape
and the partial correspondence in turn. Parameters for the

matching were determined empirically; in fact, our method
works for a wide range of parameters.

We compared our algorithm against method of ori-
ented chamfer matching (OCM) [13], works by Ferrari
et al.[6, 5], and fast direction chamfer distance matching
(FDCM) by Ming-Yu et al.[9]. We show the false positive
per image (FPPI) vs. detection rate (DR) in Fig.4. Our
method achieved better performance than the others. Be-
sides, some localization results are shown in Fig.5.

Table 1: Comparison for the detection rate for 0.3/0.4 FPPI
on ETHZ shape classes.0 and 1 are the value of λs.

Applelogos Bottles Giraffes
ours(0) 0.909/ 0.932 0.982/1 0.484/0.495
ours(1) 1/ 1 1/1 0.615/0.637

Praveen[12] 0.95/0.95 1/1 0.872/0.896
Maji[11] 0.95/0.95 0.929/0.964 0.896/0.896
Felz[4] 0.95/0.95 1/1 0.729/0.729

Ferrari[5] 0.777/0.832 0.798/0.816 0.399/0.445
Gu[7] 0.906/- 0.948/- 0.798/-

Mugs Swans Mean
ours(0) 0.742/0.788 0.97/1 0.817/0.843
ours(1) 0.864/0.879 1/1 0.896/0.903

Praveen[12] 0.936/0.936 1/1 0.952/0.956
Maji[11] 0.936/0.967 0.882/0.882 0.919/0.932
Felz[4] 0.839/0.839 0.588/0.647 0.821/0.833

Ferrari[5] 0.751/0.8 0.632/0.705 0.671/0.72
Gu[7] 0.832/- 0.868/- 0.871/-

(a)

Figure 5: The localization results. (For top to bottom row:
”Applelogos”, ”Bottles”, ”Giraffes”, ”Mugs”, ”Swans”.)
Last column shows some examples of false positives.

Besides, the detection rate (DR) at 0.3/0.4 FPPI is re-
ported in Table.1. Our detection rates for ’Applelogos’,
’Bottles’, and ’Swans’ are the best among the comparison
methods; for ’Mugs’, it is slight inferior, and is inferior for
’Giraffes’. Proposed method is only defers to the method
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Figure 4: The FPPI vs DR curves for ETHZ dataset. All methods for comparison all used the 0.2 overlapping ratio.

of Praveen et al[12] and Maji et al.[11], which used half of
the positive samples for training, and tested on the residual
samples.

6. Conclusions

We proposed a 2-fan model for shape matching that
makes the parts depend on both the pose parameter and a
global auxiliary shape. Use of the auxiliary shape connects
the parts, and makes the partial matching more resonable,
that is verified by the experiments. In the further, we will
extend the model to object segmentation, since auxiliary
shape give a rough approximation to the object boundary.
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