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Abstract– In this paper we focus on the accuracy 

analysis problem of vision measurement system in the 

process of three dimensional pose estimation of 

cooperative target, systematically describe the camera 

model and a camera calibration method based on plane 

targets, and launch an in-depth research to seek for the 

relation between the camera calibration errors and pose 

measurement result. The camera calibration errors are 

usually ignored in practical applications and they directly 

affects the accuracy of vision measurement to a large 
extent. Our central idea is to make only one variable 

different at a time by controlling various variables. Then 

the effect of that single factor can be determined. In 

addition, a large number of synthetic and real data 

experiments have been developed. As a consequence, we 

establish the relationship between the intrinsic parameters 

and pose estimation errors effectively. This paper provides 

reference and basis to control errors during vision 

measuring subsequently. 

 

1. Introduction 

 
With the rapid development of computer hardware, 

software, image acquisition and processing techniques, the 

theories and techniques of computer vision have been 

widely used in medical image processing, robotics, 

character recognition, industrial inspection, geographical 
mapping and so on. The applications of computer vision 

in a variety of measurements are quantitative analyses 

with determined accuracy requirements.  

Camera calibration is the first and critical step in vision 

measurement. It can be carried out by classical methods in 

which enough 3D points and their image correspondences 

are available as in [8]. Zhang [5] has proposed a flexible 

technique for camera calibration, which only requires the 

camera to observe a planar pattern shown at a few 

different orientations. Self-calibration is nonlinear and the 

correspondences between several images are required to 

get a unique solution. However self-calibration is lack of 

robustness [9]. Active vision calibration [10, 11] can 

overcome above shortcomings, but it undergoes with the 

known special motion of camera, which limits its range of 

application.  

The traditional method by observing a calibration 
object with known geometry in 3D space has very good 

precision. In this paper we make use of Matlab Camera 

calibration toolbox [4] based on Zhang’s calibration 

technique [5] to calibrate a camera and choose a widely 

used linear algorithm EPnP [6, 7] as the pose estimation 

algorithm.  

Calibration methods usually cause errors to a certain 

degree. Thus a careful analysis of influence of camera 

calibration on pose measurement is necessary.  

Behrooz Kamgar-Parsi [1] developed the mathematical 

tools to compute the average or expected error due to 

quantization. They derived the analytic expression for the 
probability density of error distribution of a function with 

an arbitrarily large number of independently quantized 

variables. Sunil Kopparapu [2] derived analytically the 

behavior of the camera calibration matrix under noisy 

conditions and further showed that the elements of the 

camera calibration matrix have a Gaussian distribution if 

the noise introduced into the measurement system is 

Gaussian. Jeffrey Rodriguez [3] derived the probability 

density function of the range estimation error and the 

expected value of the range error magnitude in terms of 

the various design parameters. 

We launch an in-depth and meticulous research 

focusing on the influence of camera calibration on pose 

measurement. Theoretical analysis is carried out by 

controlling various variables and making only one 

variable different at a time, so that the effect of that single 

factor can be determined. In this paper, we construct error 
models for each parameter. Afterwards our approach is 

applied to both synthetic and real images, and then 

satisfying results are obtained. Theoretical analysis and 

experiments validate the performance of our approach.  

Eventually the relationship between the intrinsic 

parameters and pose estimation error is established 

through theoretical derivation and experimental 

verification. As a consequence, this paper provides 

reference and basis for error controlling during vision 

measuring process subsequently to achieve more precise 

pose. 

 

2. Camera Calibration 
 

2.1. Camera Model 
 

The pinhole camera model is used in this paper. In this 
model, a scene view is formed by projecting 3D points 

onto the image plane using a perspective projection 
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transformation. The model describes the mathematical 

relationship between the coordinates of a 3D point and its 

projection onto the image plane, which is given by 

( )s    
w

p A R P t , with 
0

0

0

0

0 0 1

x

y

f u

f v

 
 
 
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A = ,       (1) 

where s is the scale factor, R and t are extrinsic 

parameters, i.e. pose, representing rotation matrix and 

translation vector respectively, ( , , )w w wX Y Z 
w

P  are 

coordinates of a 3D point in world coordinate system, 

( , )u v p  are coordinates of the projection point in 

pixels, and A is the matrix of intrinsic parameters, with 

0 0( , )u v  the principal point and ( , )x yf f  the equivalent 

focal lengths expressed in pixels.  

( , )u v  mentioned above are coordinates of the 

projection point in pixels, and ( , )x y  are its coordinates in 

millimeters. The relationship between them is given by 

0

0

1 0
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,                     (2) 

where the physical sizes of every pixel in X and Y 

axis direction are dx and dy. 
w

P  are defined above, and 

( , , )c c cX Y Z 
c

P  are the coordinates of a 3D point in 

camera coordinate system. The relationship between these 

two coordinate systems is given by 

  
c w

P R P t .                               (3) 

The projection equation of the pinhole camera model is 

given by 

0 0

0 0

1 0 0 1

x f

s y f

   
   

 
   
      

c
P ,                      (4) 

where the scale factor s is equal to cZ . From (2), (3), (4), 

the projection from 3D world points to 2D image points is 

established as shown in (1). 

 

2.2. Calibration Technique 
 

We assume that the plane of the calibration target is on 

Z=0 in the world coordinate system. Let's denote the ith 

column of the rotation matrix R by ir . From (1), the 

projection equation in homogeneous form is given by 

1 2 3[ ]
0

1
1

w

w

X
u

X
s v

 
   
    
   
    

 

A r r r t .                  (5) 

We still use w
P  to denote a point on the target plane but 

( , ,1)w wX Y 
w

P . Therefore, a 3D point w
P  and its image 

points p  are related by a homography H.  

s  
w

p H P , with 1 2[ ]H = A r r t ,             (6) 

where ( , ,1)u v p . 

As is clear, the matrix H is defined up to a scale factor. 

Given an image of the model plane, a homography can be 

estimated. Let's denote it by
1 2 3[ ]H = h h h . 

From (6), we have 

1 2 3 1 2[ ] [ ]h h h = A r r t ,                   (7) 

where   is an arbitrary scalar. According to the constraint 

that 
1r  and 

2r  are orthonormal, we have 

1

1 2 0  
h A A h = ,                              (8) 

1 1

1 1 2 2

     
h A A h = h A A h ,                     (9) 

These are the two basic constraints on the intrinsic 

parameters given one homography. Let  
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Note that B is a symmetric matrix defined by a 6D vector 

11 12 22 13 23 33( , , , , , )B B B B B B b . Let the ith column vector 

of H be 
1 2 3( , , )i i i ih h h 

h = . Then, we have 

i j ij

 
h Bh = v b ,                               (11) 

with 
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Therefore, the two fundamental constraints (8) and (9) 

from a given homography can be rewritten as two 

homogeneous equations as follows. 

12

11 22( )





 
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 

v
b 0

v v
,                        (13) 

If n images of the model plane are observed, by 

stacking n such equations as (13), we have 

Vb 0 ,                                    (14) 

where V is a 2n×6 matrix. If n≥3, we will have in 

general a unique solution b defined up to a scale factor. 

The solution to (11) is the eigenvector of 


V V  

associated with the smallest eigenvalue. Since b is known, 

we can compute the intrinsic parameters from matrix B by 

the following equations.  
2
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           (15) 

 

3. Accuracy Analysis of Intrinsic Parameters 
 

According to (1) and (3), we obtain s  
c

p A P , which 

indicates that the intrinsic parameters affect the accuracy 

of the 3D points in camera coordinate system, when the 

2D image points p  are acquired precisely. Then we have 
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The Taylor expansions of (16) at true values of 
xf  

and 

0u  respectively are 
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Z
X X u u

f
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where variables with overline are true values of the 

corresponding ones, and 
nR  is the remainder of the Taylor 

formula.  

The calibration result 
xf  is far greater than the error 

( )x xf f . Therefore we can ignore those high order 

terms in the Taylor expansion (18). It can be obtained 

that, the error of 
c

P  has inverse relationship with the error 

of the equivalent focal lengths approximately, when the 

principal point coordinates are constant values. From (19), 

the error of 
c

P  is linear with respect to the error of 

principal point strictly, when the equivalent focal 

lengths are constant.  

It also applies to (17) to be expanded at 
yf  and 0v  

respectively. 

 

4. Experiments 
 

4.1. Simulations 
 

In the simulation experiment, firstly we produce 

synthetic 3D to 2D correspondences in a 640 × 480 image 

acquired using a virtual calibrated camera with an 

equivalent focal length of 800 and a principal point at 

(320, 240). Then we generated the 3D word points which 

are uniformly distributed in a cube. Given a rotation and 

translation, we obtain 2D image points by a perspective 

projection. Next we calculate pose using the pose 

estimation algorithm.  

The error of the rotation matrix R is represented by the 

corresponding angle error q, which is defined by 

|| ||qE  q q ,                             (20) 

and the error of the translation vector t is defined by 

|| ||tE  t t ,                              (21) 

where t , q  are calculated translation vector and Euler 

angle respectively, and t , q  are corresponding true values.  

Deviations distributed in the interval [−10, 10] with a 

step of 0.2 are generated. Then they are added to the 

equivalent focal lengths ( , )x yf f , and the principal point 

0 0( , )u v . We calculate the camera pose using the intrinsic 

parameters attached with deviations and compute errors of 

R (represented by Euler angle q) and t. 
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Fig. 1. Pose errors caused by deviations of the equivalent 

focal length 
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Fig. 2. Pose errors caused by deviations of the principal 

point X component 0u  
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Fig. 3. Pose errors caused by deviations of the principal 

point Y component 0v  

 

As shown in figures above, errors of all pose 

components are linear with the deviations. Moreover the 

focal length has a great effect on α and z, the principal 
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point in X axis effects β and x, and the principal point in Y 

axis effects α and y. 

 

4.2. Real Data 
 

In the real data experiments, images are taken by a 

Basler sca1600-14gc industrial camera with the resolution 

of 1624×1234 and a Computar 8mm lens. 

In order to obtain clear results, a series of deviations 

distributed in the interval [0, 20] with a step of 5 are 

generated in pixel. Then they are added to the equivalent 

focal lengths ( , )x yf f , the X component of the principal 

point 
0u  and the Y component of the principal point 

0v  

respectively. We project the 3D points on the image by the 

calculated camera pose.  

 

 
Fig. 4. Real image obtained by camera 

   
(a)      (b)      (c) 

Fig. 5. Experiment results (We take the central point in 

Figure 4 as example. Figure (a), (b) and (c) are the results 

when ( , )x yf f , 0u  and 0v  are added with deviation. The 

images in the red rectangles are the enlarged views 

corresponding to the central part of circles. ) 

 

As shown in figure 5 clearly, the red square is the 

center of a circle. The blue point is projection of the 3D 

point without deviation, the green one with 5 pixels, the 

cyan one with 10 pixels, the magenta one with 15 pixels 

and the black one with 20 pixels. The translation vector in 

X and Y axis are mainly affected by the X and Y 

component of the principal point respectively. The figures 

above show that the results of real data experiments agree 
with those of simulations and the theoretical analysis.  

 

5. Conclusion 

 
In this paper we launch an in-depth research to seek for 

the relation between the camera calibration errors and 

pose measurement result. Theoretical analysis is carried 

out by controlling various variables to make one variable 

different at a time to determine the effect of a single 

parameter. We construct error models for every intrinsic 

parameter. Afterwards our approach is applied to a large 

number of synthetic and real data experiments, and 

satisfying results are obtained. The relationship between 

the influencing factors and pose estimation error is 

established through theoretical derivation and 

experimental verification. As a consequence, this paper 

provides reference and basis for error controlling during 

vision measuring process subsequently to achieve more 

precise pose.  
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