
Modeling of dynamics of nonlinear wave propagation in phononic crystals

Jun Takayanagi†, Yusuke Doi†, and Akihiro Nakatani†

†Division of Mechanical Engineering, Graduate School of Engineering, Osaka University
2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Email: takayanagi@md.mech.eng.osaka-u.ac.jp, doi@mech.eng.osaka-u.ac.jp, nakatani@mech.eng.osaka-u.ac.jp

Abstract—We construct a nonlinear lattice model to in-
vestigate the dynamics of nonlinear behavior in phononic
crystals (PnCs). Two types of mass points and springs
are introduced in the model to reproduce the difference in
material properties between the scatterers and background
in PnCs. The nonlinearity is introduced to the model by
changing the mass of each mass point depending on the
displacement gradient at the mass point. We confirm that
both the 1D and 2D models have the bandgap in the linear
dispersion relation. Moreover, in the 1D nonlinear model,
switching behavior of wave propagation is found.

1. Introduction

Metamaterials are artificial materials, which are getting
more attention for their interesting properties. A lot of
metamaterials have complicated internal structure, which
leads to properties which natural materials never have.
These properties are expected to be widely used for hu-
man technology, such as, noise controlling, heat transfer
controlling. Nonlinearity in metamaterials has been attract-
ing attention in recent years due to its potential to add new
properties and functions to metamaterials.

Phononic crystal (PnC) is a type of metamaterials con-
sisting of background and scatterers embedded in the back-
ground. The PnCs have phononic band gap (PnBG) in
which wave cannot propagate. Due to the PnBG, the PnCs
are expected to be used for wide applications, such as, en-
ergy transduction, and thermal transportation[1][2].

Moreover, new properties have been realized by apply-
ing the nonlinear dynamics in the PnC. For example, it has
been reported that the PnC can realize switching behav-
ior by combining the PnBG and nonlinear wave propaga-
tion[3][4][5]. The switching structure (SS), which has a
structure in which the PnC scatterers are partially replaced
with scatterers with different property can realize switch-
ing only at certain frequency called switching frequency.
In the SS, wave does not propagate when the amplitude of
the wave is increased at switching frequency. The SS is
expected to be applied to logic gates. However, the mech-
anism of this nonlinear behavior has not been clarified. To
put SS to practical use, it is necessary to understand the
mechanism of nonlinear behavior.
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Figure 1: 1D model

In this study, we construct a nonlinear dynamics model
of PnCs and the SS and we perform numerical simulations
on these models to understand this nonlinear behavior. The
left of the paper is organized as follows. In the section 2, we
construct the model to reproduce the nonlinear behavior of
the PnC and the SS. In the section 3, we perform numerical
simulation in linear regime, and confirm the existence of
band gap in the model. In section 4, we perform nonlinear
dynamics simulation in the model to see whether switching
behavior can be reproduced. Finally, a brief conclusion is
given in section 5.

2. Constructing the dynamics model

In this section, we construct the model to reprodece the
behavior of PnC and SS.

2.1. 1D model

We construct a nonlinear lattice model which reproduce
the dynamics of the nonlinear PnC. Fig. 1 shows the 1D
lattice model. The scatterers and the background materials
of PnC have different material properties. This difference
is models by introducing two types of mass point as well
as two types of springs. The red mass points and springs
in Fig. 1 indicate the part of scatterers. On the other hand,
the black mass points and springs indicate the part of back-
ground materials. In this study, the mass points of the scat-
terer are 10 times larger than those of the background ma-
terial, and the spring constant of the scatterer is 103 times
larger than that of the background material. The nonlin-
earity of materials is modeled by introducing the nonlinear
mass density which is a function of the displacement as

mi(t) = Mi
1

1 + ∇ · ui(t)
, (1)

where ui(t) is the displacement of i-th particle at time t, Mi

is a reference mass of the i-th mass point at the equilibrium
state. The divergence ∇·ui which represents the volumetric
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Figure 2: 2D model

strain can be approximated as increment ϵi in 1D discrete
model. ϵi is calculated as

ϵi =
ui+1 − ui−1

2l0
, (2)

where l0 is the lattice constant.
The equations of motion of the i-th mass point is

Mi
1

1 + ϵi
üi = −ki−1(ui − ui−1) − ki(ui − ui+1). (3)

2.2. 2D model

We also construct the 2D lattice model as shown in
Fig. 2. We consider a square lattice model. Each parti-
cle is connected to the eight adjacent particles. The scat-
terer pass points are embedded periodically in both x- and
y- directions. In the 2D lattice model, the nonlinear mass is
models as

mi, j = Mi, j
V0

V
, (4)

where i, j are the indices in the x, y directions respectively,
Mi, j is a reference mass of the (i, j)-th mass point at the
equilibrium state, volume Vi, j of the (i, j)-th lattice is the
area of octagon made of the eight surrounding mass points,
V0 = l20 is a area of the square at the equilibrium state.

The equations of motion of the (i, j)-th mass point in x
direction is

Mi, j
V0

V
üi, j =

8∑
s=1

Fscosθs, (5)

Fs = ks(ls − ls,0). (6)

In Eq. (5), Fs represents the force applied from the spring s
in the Fig. 2B, θs the angle between x direction and spring
s. In Eq. (6), ks represents the spring constant of spring s,
ls length of spring s, ls,0 the reference length of the spring
s at the equilibrium state

3. Linear analysis

In this section, we analysis the behavior of the model in
linear regime, which means mass of each mass points in the
model remain the initial value. We confirm the existence of
band gap in the model.

Figure 3: Dispersion relation of the 1D model: the red lines
indicate theorical one, the blue squares indicates the nu-
merical one from temporal evolution.

3.1. 1D model

In the 1D model, we confirm the existence of band
gap by analyzing the dispersion relation between the wave
number k and the frequency f . In the numerical simula-
tion, scatterer mass points are placed every five index i,
lattice constant l0 = 1.0, and number of mass points N in
the model is 500, and periodic boundary conditions apply.

3.1.1. Theory

The equation of motion (3) can be linearized by

Miüi = −ki−1(ui − ui−1) − ki(ui − ui+1). (7)

Given the condition of the model, we can calculate the the-
orical disperison curves in the model based on the assump-
tion that

u5n+s = αsexp {i (ωt − k[5n + s])} , (8)

where n = 0, 1, 2 . . . ,s = 1−5, ω is angular frequency. The
dispersion curves are shown as solid lines in Fig. 3.

3.1.2. Numerical simulation

Numerical integration of Eq. (7) is performed in order to
confirm the linear dispersion relation written in sec.3.1.1.
The initial condition is given by

ui(0) = a0sin
(

j
2π
N

i
)
, (9)

where a0 = 0.001l0 is amplitude of initial displacement,
j = kN/2π varies from 1 to 100. The blue points in Fig. 3
indicates the angular frequency ω(k) estimated from the
temporal evolution of vibrations of particle with initial con-
ditions of wavenumber k. It is found that the theoretical and
numerical results are almost identical. Thus, we have con-
firmed the existence of band gap at 0.053 - 0.159 [Hz] and
0.172 - 0.276 [Hz].
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3.2. 2D model

The dispersion relation wavenumber (kx, ky) - angular
frequency ω of the 2D model is confirmed by comparing
the results of linear theory and linear simulation at small
displacements for the two-dimensional model as well. In
the following linear theory and simulation, the scatterer
mass points are placed every 5 in the x and y directions,
the lattice constant in each direction l0 = 10−1, the number
of mass points in each direction is nx = ny = 500, and the
periodic boundary condition is applied in each direction.

3.2.1. Theory

In case that the displacement of each mass point is small
compared with the lattice constant l0, θs is assumed con-
stant, θs ∼ πs/4 (s = 1− 8). From above assumption, Fs in
Eq. (6) can be approximated as

Fs ≈ ks
l⃗s,0 · u⃗s

ls,0
, (10)

where u⃗s is the displacement vector of adjacent mass point
s from its equilibrium position and l⃗s,0 is the position vector
of mass point s from the equilibrium position of mass point
(i, j). Suppose that the displacement of each mass point in
the 2D model is represented by

u⃗i, j =

(
ai, j

bi, j

)
exp

{
k ·

(
i
j

)
+ ωt

}
, (11)

where k = (kx, ky) is wavenumber vector. The amplitudes
of the displacements of each mass point in the x− and y−
directions are given by ai, j,bi, j, which are 5 periodic in
each direction from the periodicity of the model, that is,
(a5α+γ,5β+δ, b5α+γ,5β+δ) = (aγ,δ, bγ,δ). Based on the above
conditions for amplitude, we derive a theoretical dispersion
relation k - frequency f (= ω/2π) that simultaneously sat-
isfies (model periodicity in x− direction) 5 × (model peri-
odicity in x− direction)5 × (number of dimension) 2 equa-
tions of motion. The results are shown as solid gray lines
in Fig. 4.

3.2.2. Numerical simulation

Next, a linear simulation is performed to derive the dis-
persion relation in the 2D model and compare it with the
theoretical dispersion relation derived from the linear the-
ory. In the linear simulation, initial displacements

u⃗i, j =

(
a0

a0

)
sin

{
2πw
nx

i +
2π · 0

ny
j
}

(12)

is given, where a0 = 0.01l0 is the amplitude of initial dis-
placement in x− and y− directions, w is varied from 1 - 50.
wavenumber in the x− direction kx, caluculated by 2πw/nx

is varied from 0 − 0.628.
The results of the simulation are shown in Fig. 4 with

blue dots. The linear theory and simulation results do not

match for results around f = 4.6[Hz] and for f > 5.5[Hz].
This may be caused by accuracy of the linear theory. How-
ever, the results agree with the linear theory in that the band
gap is around 0.4 − 4.2[Hz] and that there is a dispersion
relation at f = 4.2 and 5.0[Hz].

Figure 4: Dispersion relation of the 2D model: the grayed
lines indicate theorical one, the blue dots indicates the nu-
merical one from temporal evolution. Results of the part
surrounded by the red frame is shown in Fig. 5.

Fig.5 shows the results under 0.5 [Hz], the red frame
shown in Fig. 4. The correspondence with the linear the-
ory could not be confirmed for this frequency range due
to the low resolution of the Fourier transform of the linear
simulation.

4. Nonlinear dynamics modeling

We introduce the nonlinearity in the 1D model, and
see how the nonlinearity affect to dispersion relation, and
whether switching behavior can be realized in the model.
In numerical simulation, sinusoidal initial displacement is

Figure 5: Dispersion relation of 2D model in the frequency
range f < 0.5 [Hz]
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Figure 6: Results of nonlinear dynamics simulation: The
number in the legend on the right of the graph indicates the
magnitude of the amplitude and theorical dispersion curve
in linear regime is shown as line.

Figure 7: Results of nonlinear dynamics simulation near
f = 0.05 [Hz]: f (on y axis) drops down as the amplitude
of initial input increases.

applied to the model, which is given as

ui(0) = a0sin
(

j
2π
N

i
)
, (13)

where a0 is amplitude of initial displacement and varies
from 0.001l0 to 0.05l0, j varies from 1 to 50. We analyze
how the behavior changes by increasing the amplitude of
initial displacement. The results is shown in Fig. 6. In the
lowest dispersion curve, the bifurcation is observed. Fig. 7
shows the results around k = 0.2 − 0.6[1/cm], f = 0 − 0.06
[Hz]. The results show that frequency components become
smaller as the input amplitude increases than when the am-
plitude is small (Such as, a0 = 0.001l0.), or theoretical re-
sults in the linear regime (shown as line.). Thus, switching
behavior is realized in the model around f = 0.0525 [Hz].

5. Conclusion

We construct the lattice model to reproduce the behav-
ior of the PnCs and the SS, especially nonlinear behavior
seen when the input amplitude is increased. This differ-
ence in the material property between the background and
the scatterers is modelled by introducing the two types of
mass point as well as the two types of springs. Moreover, in
order to introduce nonlinearity in the model, mass of each
mass points are changed in response to the displacement.
In the linear dynamic simulation, the existence of band gap
in the 1D and 2D model were confirmed. Finally, switch-
ing behavior was confirmed near f = 0.0525 [Hz] in the
1D model in nonlinear regime.
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