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Abstract— We considered a clustered network of burst-
ing neurons described by the Huber-Braun model [1]. In
the upper level of the network we used the connectiv-
ity matrix of the cat cerebral cortex network, and in the
lower level each cortex area (or cluster) is modelled as a
small-world network [2]. There are two different coupling
strengths related to inter and intra-cluster dynamics. Each
bursting cycle is composed of a quiescent period followed
by a rapid chaotic sequence of spikes, and we defined a ge-
ometric phase such that it is possible to investigate the onset
of synchronized bursting, as the state in which the neuron
start bursting at the same time, whereas their spikes may
remain uncorrelated [3]. The bursting synchronization of
a clustered network has been investigated using order pa-
rameter and the average field of the network, in order to
identify regimes in which each cluster may display syn-
chronized behavior, whereas the overall network does not.
We introduce quantifiers to evaluate the relative contribu-
tion of each cluster in the partial synchronized behavior of
the whole network.

1. Introduction

There are some neuroanatomic networks which have
been intensively studied in the last years, which have
served as paradigmatic models for computer simulations
of neuronal networks. One of them is the cat cerebral cor-
tex, consisting ofN = 53 cortical areas, connected through
K = 826 directed links [4]. These cortical areas are orga-
nized into four classes according to their common function-
ality: visual, auditory, somato-sensory-motor, and fronto-
limbic[Fig. 1]. Each cortical area, on its hand, is a network
itself formed by neurons connected through electrical and
chemical synapses. Hence a proper description of the cat
cortex would be a network of networks, or clustered net-
work [5].

Each cortical area in such a clustered network is re-
garded as a network of neurons interacting with neurons
from the same cortical area as well as from others. There
have been considered many different connection architec-
tures for clustered networks. One of them considers each
cortical area as a small-world network in which, from theN

Figure 1: (color online) Matrix representation of the
cortico-cortical connectivity of the cat, according to Ref.
[5]. The connections among cortical areas are classified
as null (white), weak (light gray), intermediate (dark gray)
and strong (black), with respect to the axonal density of
fiber projections.

neurons belonging to each area, 30− 40% of them are con-
nected with neurons belonging to different areas [6]. This
can be modelled as a random network characterized by an
inter-cluster probability (“random-plus-small-world”).

In this work we propose a different architecture for clus-
tered networks based on the cat cortical connectivity ma-
trix, where each cortical area is modelled by a small-world
network of individual neurons. Instead of considering the
synapses among neurons belonging to different cortical ar-
eas, we make the hypothesis that the cortical areas inter-
act through their mean fields. In other words, we assume
that the axonal fibers connecting two cortical areas are rep-
resented by a coupling between the corresponding micro-
scopic mean fields. This is actually a coarse-grained de-
scription of neuron activity, and is expected to hold as long
as we regard each cortical area as producing a coherent
membrane potential. Hence, we expect the neurons from
each cortical areas to act synchronously so as to generate a
coherent signal which is represented by the mean field.

Our aim is to investigate bursting synchronization in a
clustered network in which the outer level consists of the
cat cerebral cortex network, as known in the literature, and
the cortical areas (inner level) is a small world of burst-
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Membrane capacitance CM = 1.0µF/cm2

Maximum conductances(mS/cm2)
ḡNa = 1.5 ḡK = 2.0 ḡsd = 0.25 ḡsa = 0.4 ḡL = 0.1

Characteristic times(ms)
τNa = 0.05 τK = 2.0 τsd = 10 τsa = 20

Reversal potentials(mV)
ENa = 50 Esd = 50 EK = −90 Esa = −90 EL = −60

V0Na = −25 V0K = −25 V0sd = −40
Other parameters
ρ0 = 1.3 φ0 = 3.0 T0 = 50oC τ0 = 10 η = 0.012µA
γ = 0.17 sNa = 0.25 sK = 0.25 ssd = 0.09

Table 1: Parameter values of the neuronal dynamics model
according to Ref. [1].

ing neurons. The coupling in the outer level is performed
among the mean field of the networks representing each
cortical areas. The dynamics of the latter is described
by the Huber-Braun (HB) model of Hodgkin-Huxley-type
thermally sensitive neurons [1].

2. Bursting neuron dynamics

In this Section we describe briefly the equations and
parameters of the Huber-Braun (HB) model for thermally
sensitive neurons [1]. The dynamics of the membrane po-
tentialV of the neuron is governed by the membrane equa-
tion (V is measured inmV and time inms):

CM
dV
dt
= −INa − IK − Isd − Isa − IL + Iext, (1)

where CM is the membrane capacitance (measured in
µF/cm2). The current densities due to the Sodium, Potas-
sium and leak channels are denoted respectively byINa, IK ,
andIL (measured inµA/cm2). The external current density
Iext is either injected or due to the synaptic coupling with
other neurons.

We associate a given ohmic conductance to each ion cur-
rent, as

INa = ρḡNaaNa(V − ENa), (2)

IK = ρḡKaK(V − EK), (3)

Isd = ρḡsdasd(V − Esd), (4)

Isa = ρḡsaasa(V − Esa), (5)

IL = ρḡL(V − EL), (6)

whereḡNa, ḡK , ḡsd, ḡsa, ḡL are the maximum specific con-
ductances (measured inmS/cm2), and the reversal (Nernst)
potentials for each ionic current are denoted byENa, EK ,
Esd, Esa andEL. The parameterρ is a scale factor depend-
ing on the temperatureT , given by

ρ = ρ

(T−T0)
τ0

0 , (7)

whereρ0, T0 andτ0 are constants.
The time evolution of the activation currentsaNa, aK , asd,

andasa are governed by the following equations

daNa

dt
=

φ

τNa
(aNa,∞ − aNa), (8)

daK

dt
=

φ

τK
(aK,∞ − aK), (9)

dasd

dt
=

φ

τsd
(asd,∞ − asd), (10)

dasa

dt
=

φ

τsa
(−ηIisd − γasa), (11)

whereτNa, τK , τsd andτsa are characteristic times. The pa-
rameterη serves for increasing Calcium ion concentration
following Isa, while γ accounts for active elimination of
intracellularCa2+. A second temperature-dependent scale
factor is defined as

φ = φ

(T−T0)
τ0

0 . (12)

The activation functionsaNa,∞, aK,∞, asd,∞, depend on
the membrane potential by the relations

aNa,∞ =
1

1+ exp[−sNa(Vi − V0Na)]
, (13)

aK,∞ =
1

1+ exp[−sK(Vi − V0K)]
, (14)

asd,∞ =
1

1+ exp[−ssd(Vi − V0sd)]
, (15)

where sNa, sK , and ssd are constants andV0Na, V0K , and
V0sd are activation voltages.

A typical bursting event in such a neuron starts when a
neuron fires a large number of fast spikes, and ends with the
ensuing quiescent period. The beginning of each burst has
been found to be a local maximum of the recovery variable
1/Iisa. It is possible to define a geometric bursting phase,
which increases by 2π after each burst, even though the
dynamics in each timescale is actually chaotic. Lettk the
time at which thekth bursting cycle begins. The phase is
obtained by a simple linear interpolation as

ϕ(t) = 2πk + 2π
t − tk

tk+1 − tk
, (tk < t < tk+1), (16)

and increases monotonically with time.

3. Dynamics of the neuronal network

The neuronal network to be studied in this work consists
of two levels: in the outer level the nodes are cortical areas
and the links are the respective connections (axonal fibers).
The architecture of these links is given by the corticocor-
tical connectivity of the cat, represented by its weighted
adjacency matrixAi j, whose elements are depicted in Fig.
1. Each cortical area, on its hand, is a small-world network
of neurons, obtained from the NW scheme with a given
probability p.

Hence we considerS cortical areas, each of them with
N neurons, i.e. the whole network hasS N nodes (note that
in Section II we denoted byN the number of neurons of
the whole network). Each neuron will be identified by two
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Characteristic times(ms)
τr = 0.5 τd = 8

Reversal potentials(mV)
Vsyn = 20 V0 = −20

Table 2: Parameter values for the synaptic dynamics ac-
cording to Ref. [7].

labelsV ( j)
i : the areaj to which it belongs (j = 1,2, . . . S )

and its indexi within the jth area (i = 1,2, . . .N). The
dynamics of the coupled neurons is described by the HB
model, whose membrane equation is

CM
dV ( j)

i

dt
= −I( j)

i,Na − I( j)
i,K − I( j)

i,sd − I( j)
i,sa − I( j)

i,L + I( j)
i,ext, (17)

where the ionic currents for thejth neuron are given by
Eqs. (2)-(6) and (8)-(15).

The coupling term for thejth neuron, denoted byI( j)
i,ext,

is represented by two synaptic currents of different nature:
(i) an inner coupling, which stands for chemical synapses
with a small-world connectivity within each area, and (ii)
an outer coupling, by which the areas connect to each other
through their corresponding mean potentials. The contri-
bution of the inner coupling can be modelled as

I( j)
i,IN = gIN

N
∑

k=1

A( j)
ik r( j)

k (t)(Vsyn − V ( j)
k ), (18)

with gIN is the inner coupling strength with conductance di-
mensions,A( j)

ik are the elements of the adjacency matrix for

the jth area,Vsyn is the synaptic reverse potential, andr( j)
k is

the fraction of bond receptors of thekth neuron belonging
to the jth area, whose evolution is described by

dr( j)
k

dt
=

(

1
τr
−

1
τd

)

1− r( j)
k

1+ exp(−V ( j)
k + V0)

−
r( j)

k

τd
, (19)

whereV ( j)
k is the membrane potential of the post-synaptic

neuron,τr andτd are characteristic rise and decay times, re-
spectively, of the chemical synapse. The numerical values
of the parameters used here are given in Table 2. We sup-
pose that their values are the same for each area. However,
each cluster has a different adjacency matrixA( j)

ik , since it
describes a different realization of a small-world network
obtained (from the Newman-Watts prescription).

The contribution of the outer coupling can also be de-
scribed by a current density in the form

I( j)
OUT = gOUT

S
∑

ℓ=1

A( j)
j,ℓM( j), (20)

with gIN is the outer coupling strength (conductance),A j,ℓ

are the elements of the adjacency matrix of the cat cortex

connectivity, and

M( j) =
N

∑

i=1

V ( j)
i , (21)

is the mean field of thejth cluster, i.e. the cat matrix con-
nects two cortical areas characterized collectively by their
mean potentials. The total coupling current acting on the
ith neuron belonging to thejth area is thus

I( j)
i,ext = I( j)

i,IN + I( j)
OUT . (22)

Moreover, the values of the inner and outer coupling
strengths, denoted bygIN andgOUT respectively, are var-
ied over an interval chosen as to always preserve a bursting
behavior of the coupled neurons (a too large coupling may
drive the neuron off the bursting regime into an irregular
spiking one).

4. Bursting synchronization

An assembly of neurons is said to exhibit bursting syn-
chronization if their phases coincide for all times. This as-
sembly can be, for example, a whole cluster, or the entire
network. Since bursting synchronization is an instance of
phase synchronization, a useful quantitative diagnostic is
provided by Kuramoto’s order parameterz. Let N be the
number of neurons in a given clusterj. The complex order
parameter magnitude for thejth cluster is then defined as

R j(t) =

∣

∣

∣

∣

∣

∣

∣

1
N

N
∑

i=1

eiϕi j

∣

∣

∣

∣

∣

∣

∣

, ( j = 1,2, . . . S ) (23)

If all neurons in a cluster are completely synchronized,
all the corresponding bursting phases coincide and thus the
terms in (23) add coherently such thatR j → 1. If, on the
other hand, the neurons are completely non-synchronized
their bursting phases are totally uncorrelated andR j → 0.
We may estimate that, in this case,R ∼ 1/

√
N for a finite

network, since there will be a number of chance coinci-
dences that eventually yield a nonzero sum. We choose the
value ofR j at timet = 3× 104ms, for which the transients
have died out.

We can take the whole network into account in two ways:
either we compute the (ensemble) average over all clusters

Rmean =
1
S

S
∑

j=1

R j, (24)

or we calculate the order parameter magnitude for the
whole network

Rglobal =

∣

∣

∣

∣

∣

∣

∣

∣

1
NS

N
∑

i=1

S
∑

j=1

eiϕi j

∣

∣

∣

∣

∣

∣

∣

∣

, (25)

In Fig. 2 we plot the values of the clustered-averaged
order parameterRmean as a function of the two coupling pa-
rametersgIN (inside each cluster) andgOUT (connections
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Figure 2: (color online) Cluster-averaged order parameter
as a function of the two coupling parametersgIN andgOUT ,
for a network ofS = 53 clusters andN = 256 neurons
per cluster. Each cluster is a small-world network obtained
from the Newman-Watts scheme with probabilityp = 0.01.
The clusters are connected through their mean fields using
the cat cortical connectivity matrix.

among clusters). Considering firstgOUT = 0, i.e. the clus-
ters are not connected among themselves, we find that the
variation ofRmean with gIN has the typical shape of a con-
tinuous phase transition: for smallgIN the clusters do not
display phase synchronization, and soRmean is correspond-
ingly small. After a critical value ofgIN,cr, however, the or-
der parameter for each cluster (and their average) begins to
increase according to a scaling lawRmean ∼ (gIN − gIN,cr)̟,
where̟ = 1/2 for the Kuramoto model of phase oscilla-
tors. Since we have for each cluster a small-world network,
the exponent̟ is expected to be different, though.

As we increase the coupling among clusters (gOUT , 0),
the transition to synchronized behavior in the clusters con-
tinue to exist, but with smaller values of the critical pa-
rametergIN,cr, which is an effect of the increasing coupling
strength caused by the outer network. Roughly speaking,
the same scenario happens if we switch off the inner cou-
pling and increase the outer coupling. In this case, however,
the coupling between neurons is mediated by the mean
fields of the clusters they belong to, and thus the effect is
not so pronounced as before. Nevertheless we have a tran-
sition scenario but with bumps and fluctuations that come
from the indirect nature of the coupling.

5. Conclusions

We choose the parameters to be varied the synaptic con-
ductances within each area (gIN) and among different clus-
ters (gOUT ). As a general trend, the larger the values of
both, the more synchronized is the entire network. In fact
the effect ofgIN is more pronounced thangOUT to achieve
the same effect. Hence the internal cluster dynamics in-
fluences more the overall result than the inter-cluster cou-
pling.

It may well happen that a number of clusters are synchro-
nized at different levels, what results in a non-synchronized
behavior, when considered from a global point of view.
This is clearly different, however, from a situation when
all clusters are themselves non-synchronized. We have
defined, to distinguish between these situations, suitable
quantities based on the order parameters computed for both
the entire network and for the average taken over various
cortical areas. We have found that large values of this quan-
tity are observed for intermediate values ofgIN and large
values ofgOUT . The reason for this is still unclear but prob-
ably results from the dynamics of the coupled system.
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