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Abstract—In this work, we investigated the organiza-
tion of activity-dependent time-varying network of cou-
pled phase oscillators, where the coupling weights dynam-
ically change depending on the relative timings between
the oscillators. We determined the phase coupling func-
tion Γ(ϕ) of the oscillator model using conductance-based
neuron models and examined the effects of the Fourier zero
mode of Γ(ϕ). We demonstrated that heterogeneous layered
clusters with different frequencies emerge from homoge-
neous populations as the Fourier zero mode increased. Our
findings would provide new insights into the self-assembly
mechanisms of neural networks related to synaptic plastic-
ity.

1. Introduction

Synaptic plasticity plays a vital role in learning in the
brain, and it has been intensively investigated to understand
the mechanism underlying learning. It induces changes
in the structures of synaptic connections associated with
neuronal activity, facilitating the organization of memory-
related functional neural assemblies [1]. Recent neuro-
physiological experiments revealed that changes in synap-
tic connections depend on the relative spike timing between
neurons during spike-timing-dependent plasticity (STDP)
[2–4]. This observation implies that the temporal spike
patterns of neurons determine synaptic patterns, raising
the question of how STDP organizes neural networks into
functional neuronal assemblies. This query remains an
open question in the field of theoretical neuroscience, par-
ticularly when a network has rich recurrent connections.

Several numerical studies reported that STDP-organized
recurrent networks exhibit interesting behaviors, includ-
ing the emergence of clusters with neurons that fire syn-
chronously [5–10] and feed-forward networks [11–15].

The interplay between neurons and their synapses makes
it difficult to analyze the dynamics of STDP-organized re-
current networks. In the presence of plasticity, the spike
pattern alters the structure of the synaptic connections, re-
sulting in the formation of new spike patterns. In other
words, the synaptic connections and neuronal activities
evolve simultaneously. To elucidate the essential nature of
this co-evolving neural network dynamics, we developed
a simple, co-evolving dynamical model of neuronal oscil-

lators [16, 17]. In this talk, we consider the Fourier zero
mode of the phase coupling function of the oscillator. Pre-
vious studies on phase oscillator have ignored this mode.
However, we find that this constant term is critically impor-
tant for STDP-organized recurrent networks, as evidenced
by the result that heterogeneous layered clusters with dif-
ferent frequencies emerge from homogeneous populations
with identical natural frequencies.

2. Model

We consider the following equation of a coupled dynam-
ical system:

dxi

dt
= F(xi) +

∑
j

fi j(xi, x j), (1)

where, xi denotes the state of the i-th neuron in a network
of N neurons. The first term describes the intrinsic dynam-
ics of the neurons (e.g. several types of ion channels) and
the second term describes coupling with other neurons via
synapses.

The activity of a neuron is assumed to be oscillatory,
rather than random. Thus, we consider that the neuron
model undergoes a limit-cycle oscillation, which is per-
turbed by synaptic inputs and noises. This assumption en-
ables us to reduce the description of the neuron to a simple
form with the variable, ϕ. Using a standard reduction tech-
nique [18], the coupled limit-cycle system can be described
as follows:

dϕi

dt
= ωi +

1
N

N∑
j

ki jΓ(ϕi − ϕ j), (2)

where, ϕi denotes the phase of the limit-cycle oscillation of
the i-th neuron in the network (i = 1, . . .N), ωi is its natural
frequency, and ki j is the coupling weight of the connection
from the j-th to the i-th neuron. The coupling function Γ(ϕ)
is a 2π-periodic function.

Next, we introduce the dynamics of the synaptic weights
due to the plasticity. The evolution of the weights depends
on the relative timing between the neurons, similar to the
case with STDP.

dki j

dt
= ϵΛ(ϕi − ϕ j),

∣∣∣ki j

∣∣∣ ≤ 1. (3)
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The function Λ(ϕ), which we refer to as a learning func-
tion, determines the evolution of the weights. The learning
parameter ϵ has a very small value because the dynamics
of the synaptic weights are much slower than those of the
neurons. The condition

∣∣∣ki j

∣∣∣ ≤ 1 means that the synaptic
weight is bounded. If the weight has a value outside [－
1,1], then the weight is immediately set to the appropriate
bounded value (－ 1 or 1). This rule is reasonable because
the weight cannot increase indefinitely.

The learning function Λ(ϕ) is periodic. Therefore, for
the sake of simplicity, we assume that Λ(ϕ) takes the form:

Λ(ϕ) = − sin(ϕi − ϕ j + β) (4)

where β is the shift parameter that characterizes the learn-
ing function (top panels in Fig. 1). For example, when
β ∼ −π/2, the weights for a pair of in-phase (or anti-phase)
neurons will increase (or decrease). This relationship can
be considered as a Hebbian-like rule. When β ∼ 0, the de-
pendency on the relative timing becomes similar to tempo-
rally asymmetric Hebbian rule. When β ∼ π/2, the learning
function has the opposite form to the Hebbian-like rule.

In this talk, we consider the effect of the constant term
of the coupling function Γ(ϕ) [19]. This constant term has
been ignored in previous studies of Kuramoto phase oscil-
lators because it can be absorbed into the natural frequency
term:

dϕi

dt
= ωi +

1
N

∑
ki jΓ(ϕi − ϕ j) (5)

= ωi +
1
N

∑
ki j

[
Γ0 − sin(ϕi − ϕ j + α) + · · ·

]
(6)

= ω̃i −
1
N

∑
ki j

[
sin(ϕi − ϕ j + α) + · · ·

]
, (7)

where
ω̃i = ωi +

Γ0

N

∑
ki j. (8)

In an adaptive network with synaptic plasticity, however,
the frequency ω̃i depends on the coupling strength ki j,
which changes dynamically over time. In other words, Γ0
can provide a mechanism for the adaptive control of the fre-
quency during synaptic plasticity. Therefore, we examined
the effects of the constant term Γ0 on the network orga-
nization due to the synaptic plasticity using the following
equations:

dϕi

dt
= ω +

1
N

∑
ki j

[
Γ0 − sin(ϕi − ϕ j + α)

]
(9)

dki j

dt
= −ϵ sin(ϕi − ϕ j + β),

∣∣∣ki j

∣∣∣ ≤ 1. (10)

The oscillators were assumed to have identical natural fre-
quencies.

3. Results: Emergence of heterogeneous layered clus-
ters from homogeneous populations

When Γ0 ∼ 0, the model given by the above equations
exhibits the same behavior as that described in [16, 17]. As

Γ0 increases, a novel type of network organization emerges
at β ∈ (−0.3π, 0.1π), with a coherent state being observed
at Γ0 = 0.

When Γ0 = 0.3, layered clusters of the same frequency
are organized (Fig. ??). The order parameters converge to
nonzero values, and the normalized rate of change of the
coupling weights reaches zero, indicating a fixed structure
of the phase pattern and the coupling weights. the order
parameters is given by: Rm = | 1N

∑
j eimϕ j |, and the normal-

ized rate of change in the weights, averaged over all con-
nections, given by ∆K(t) = 1

N(N−1)
∑

i, j
|ki j(t)−ki j(t−∆)|

∆
. The

sampling interval is ∆ ∼ 2π
ω
≪ 1
ϵ
. The raster plot and phase

distribution demonstrate the organization of several clus-
ters of synchronized oscillators. The phase differences be-
tween the clusters are locked, and their frequencies are the
same. A type of layered connection is organized through-
out this phase pattern, in which neurons within a cluster are
symmetrically connected via positive couplings. Connec-
tions between the clusters become asymmetric according to
their phase differences.

As Γ0 increases (Γ0 = 0.5), the state of layered clus-
ters with the same frequency transitions to another type of
layered clusters (Fig. 1). The order parameters and the nor-
malized rate of change of the coupling weights do not con-
verge to fixed values, and they oscillate quasi-periodically
(Fig. 1 (a)). The global synchronization is broken, and
multiple clusters with different frequencies emerge. In fact,
the raster plot clearly shows that the oscillators are orga-
nized into several synchronized clusters, and the clusters
are not phase-locked (Fig. 1 (c)). These clusters have dif-
ferent frequencies as indicated by the several peaks in the
frequency distribution (Fig. 1 (d)). Moreover, the phase
distribution has several peaks indicating the emergence of
multiple synchronized clusters (Fig. 1 (e)). The coupling
weights indicate that the layered connection type is the
same as when Γ0 = 0.3 (Fig. 1 (f)). Note that the oscil-
lators have the same natural frequencies. The heterogene-
ity of their frequencies is caused by the organization of the
neural network as a result of the synaptic plasticity.

4. Discussions

In this study, we investigated a network of coupled neu-
ral oscillators in which the connections between the oscil-
lators change dynamically due to synaptic plasticity. We
demonstrated that the co-evolving dynamics of the connec-
tions and neural oscillators lead to the emergence of several
specific types of structured connections and neural activi-
ties. We examined the effects of the Fourier zero mode
of the phase coupling function Γ(ϕ). This constant Γ0 has
been ignored in previous studies of the Kuramoto model,
but it has significant effects on the organization of adap-
tive networks due to synaptic plasticity. For example, we
demonstrated that heterogeneous layered clusters with dif-
ferent frequencies emerge from a homogeneous population
of neurons as Γ0 increases.
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Figure 1: Emergence of layered clusters with the same frequency, where α = 0.1π, β = −0.1π and Γ0 = 0.3. Time
development of (a) the order parameters and (b) the normalized rate of change of the coupling weights ∆K. (c) Raster
plot of the stationary state. Index i of the neurons is arranged in order of increasing phase ϕi. (d) Frequency and (e) phase
distribution at t = 30,000. (f) Matrix of synaptic weights ki j at t = 30,000.
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Figure 2: Emergence of layered clusters with different frequencies, where α = 0.1π, β = −0.1π and Γ0 = 0.5. Time
development of (a) the order parameters and (b) the normalized rate of change of the coupling weights ∆K. (c) Raster
plot of the stationary state. Index i of the neurons is arranged in order of increasing phase ϕi. (d) Frequency and (e) phase
distribution at t = 30,000. (f) Matrix of the synaptic weights ki j at t = 30,000.

[15] H. Cateau, K. Kitano, and T. Fukai. “Interplay
between a phase response curve and spike-timing-
dependent plasticity leading to wireless clustering.”
Phys. Rev. E, vol. 77, 051909, 2008.

[16] T. Aoki and T. Aoyagi. “Self-organized network of
phase oscillators coupled by activity-dependent inter-
actions.” Phys. Rev. E, vol. 84, pp. 066109, 2011.

[17] T. Aoki and T. Aoyagi. “Co-evolution of phases and
connection strengths in a network of phase oscilla-
tors.” Phys. Rev. Lett., vol. 102, pp. 034101, 2009.

[18] Y. Kuramoto. Chemical Oscillations, Waves, and Tur-
bulence. Springer, New York, 1984.

[19] T. Aoki. “Self-organization of a recurrent network
under ongoing synaptic plasticity.” Neural Networks,
in press.

- 746 -


