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Abstract—Claims of “brain criticality” suggest that
the generation of activity on all scales in a critical state
(e.g. neuronal avalanches) may underlie complex, adap-
tive cognition. However the relationship of the power-
law distributed network observables behind these claims
to brain functional output is not known. Here we
use a novel approach to this problem by considering
functional output directly: the networks generated by
Drosophila melanogaster during pre-copulatory courtship.
This courtship body language, treated as a symbolic dy-
namics, has been shown to exhibit Context-Free and
Context-Sensitive grammars in the Chomsky hierarchy;
here we show that the underlying networks corresponding
to such grammars deviate from scale-free structure. We
provide a simple network growth model, which matches
the degree distributions of the non-scale-free networks by
breaking the preferential attachment paradigm with a sec-
ond internal linking process. From these observations, we
suggest that the higher level cognition associated with such
grammatical structure may not be compatible with a critical
state.

1. Introduction

Fundamental to abstract reasoning is the ability to place
cognitive “objects” in relation to one another. The ex-
plicit manifestation of this ability in language, formalised
through grammar classes (the “Chomsky hierarchy”), has
been conjectured to be the defining characteristic of human
intelligence [1]. By solving a classic undecidability prob-
lem with statistical argument, recent work has shown that
this is not the case: higher language classes can even be
expressed by the simple fruit fly [1]. Here we examine this
recent surprising example from Drosophila melanogaster
pre-copulatory courtship (DPC) in light of claims (e.g. Ref.
[2]) that “brain criticality” underlies complex adaptive cog-
nition.

Claims of brain criticality have mostly relied on the ob-
servation of power laws, though some authors have also
suggested that deviations from power law behaviour either
side of the claimed critical state further enhance this evi-
dence. Experimental limitations hinder this line of argu-
ment: there is seldom sufficient resolution of an order pa-
rameter to observe the neccessary cusp at the proposed crit-
ical control parameter value (e.g. [3]), and isolated exper-
imental cases which deviate from a power law serve only

to demonstrate that non-critical behaviour is also possible
(e.g. [4]). Here we focus not on the existence of critical
states, but rather on their utility in cognition.

Intuitively, it may seem that the availability of structure
at all scales in a critical state should be useful for com-
plex adaptive function, however we question the support-
ing evidence behind this intuition on two levels: 1) the de-
pendence of simulation results on the network structures
and measurements used; and 2) the unknown relationship
between observables and function in biological networks.
On the simulation level for instance, “reservoir computing”
systems may perform calculations on time series when the
“reservoir” is near a critical state [5], however this is con-
tingent on learning occuring on feed-forward inputs and
outputs, which are not considered in the criticality claim.
In another example, a measure of information propaga-
tion based on avalanche size distributions (a classic critical
order parameter) was maximised in the critical state, but
when noise was added (as is always the case in biological
systems), the critical state no longer maximised this mea-
sure [6]. Even the maximal dynamic range claimed in the
critical state is not so clearly useful. Indeed, in modelling
the mammalian cochlea, the correct sensitivity profile is
obtained when the Hopf oscillator elements are tuned away
from the critical bifurcation point (see e.g. [7] for a single
element, and [8] for the networked context). On the bio-
logical level, the first invasive multielectrode array obser-
vations of power law distributed neuronal avalanches in rat
cortex slices [9] were recorded in vitro (thus with no clear
functional relevance), but even in vivo, neuronal avalanche
sizes [10] or high activity brain regions [11] do not have
clearly defined functional outputs (the search for such re-
lationships, in fact, partially motivates the brain criticality
conjecture). The above examples are by no means an ex-
haustive or conclusive rejection of brain criticality, and this
is not our intention. Instead, we wish to motivate the ap-
proach used in this paper, which examines real biological
networks, but avoids the function issue by working directly
with functional output.

2. Networks Underlying DPC

From visual inspection of high speed video courtship
recordings, DPC was decomposed into 37 fundamental ac-
tions: body language acts which are non-overlapping, oc-
cur on timescales well beyond the limit of neural refrac-
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Table 1: Definitions of the DPC sequence groups. Here “fe-
males” comprises: immature virgin female; mature virgin
female; mated female. See text for explanation of female
behaviour group.

group name included sequence types
male behaviour male vs. females
female behaviour females vs. male

male vs. frutiless
mature v. fem. vs. fruitless

male and female behaviour seq. in male behaviour
seq. in female behaviour

tory periods, do not generally have inherent physical re-
strictions on their ordering, and for which further decom-
position yields no further information about the courtship
sequence [12]. Thus the actions performed by each indi-
vidual Drosophila during courtship pairing can be repre-
sented as a finite sequence S a = {a1, a2, ..., am}, where each
ai ∈ S a is one of the 37 fundamental actions.

The undirected topological network underlying such a
DPC sequence has vertices defined by the actions present,
and edges defined by adjacency of actions (vertices) in the
sequence. i.e., vertex set V = {vi : vi ∈ S a} and edge set
E = {(vi, v j) : vi = an, v j = an+1; an, an+1 ∈ S a}. Gen-
erally we deal with networks composed from more than
one sequence, which are defined in the usual graph union
sense. This topological, undirected representation avoids
introducing bias due to incomplete data, while still eluci-
dating the structure on which the sequences were (neces-
sarily) produced by some network walk.

In all, 10 fundamental action sequence types were
recorded [12], each corresponding to one pairing-
protagonist combination. For instance, the paring of male
and mature virgin female drosophila gives the two sequence
types (protagonist vs. antagonist): male vs. mature virgin
female; and mature virgin female vs. male. 3 main pair-
ings give 6 of the sequence types: male paired with each
of immature virgin female, mature virgin female and mated
female. Further pairing of males with a genetic mutation,
here termed fruitless, with each of (normal) male and ma-
ture virgin female give a further 4 sequence types (a total
of 10). Here we examine the sequence types in 3 groups:
male behaviour; female behaviour; and male and female
behaviour (Table 2). We use behaviour in the sense defined
in [12, 13], so that the female behaviour includes the gen-
der switching observed in male vs. fruitless (however se-
quences produced by fruitless as protagonist are excluded).

2.1. Truncated Power Law Fitting

If the neural system producing the DPC networks is op-
erating in a critical state, the network degree distribution,

as the key structural observable, could be expected to fol-
low a (truncated) power law. Great statistical care must
be taken when testing for power laws, particularly in small
datasets, where truncation effects become increasingly im-
portant. We follow closely the method outlined in [14]
(which in turn closely follows [15]). Maximum likelihood
estimation of the discrete truncated power law exponent is
used to define a fitted distribution, from which 1000 surro-
gate datasets are sampled. Each of these surrogate datasets
is then also fit by maximum likelihood estimation, and their
Kolmogorov-Smirnov (KS) distances are compared to the
KS distance of the original data to its fit. A “p-value” (here,
a measure of goodness of fit) is then calculated as the frac-
tion of surrogate datasets with a larger KS distance (a worse
fit) than the original data. A high p-value is not sufficient
to demonstrate that the data follow a power law, but only
to indicate feasability. A low p-value is sufficient for re-
jection of a power law, though the selection of a rejection
threshold is rather arbitrary.

The lower and upper truncation bounds were selected
as the minimum and maximum degrees present due to the
small size of the DPC networks, except in the male and fe-
male behaviour case, where the second largest degree was
selected, avoiding a large gap in the degree distribution. To
avoid additional noise and binning issues, we plot results as
the complement of the cumulative distribution P(k), called
the survival function, S F(k) = 1 − P(k). Readers may ex-
pect that a power law should appear as a straight line in log-
log space, however we emphasise that for a truncated sur-
vival function this is not the case, as the distribution must
reach zero at the upper bound. Over a small range, power
law and exponential distributions are very similar; we also
tested exponential distributions on our data and obtained
similar fits and p-values (not shown).

3. Results, Modeling, Discussion

The truncated power law fits to the DPC network degree
distributions (Fig.1) reveal a structural difference which
coincides with previous results regarding the grammatical
structure of the language underlying the networks. The fe-
male behaviour network (Fig. 1a), which is generated from
courtship sequences showing limited recursion, shows a
plausible power law fit (p = 0.62). The male behaviour
and male and female behaviour networks on the other hand
(Fig. 1b,c), which are generated from sequences show-
ing greater recursion, deviate sharply from a power law
at higher degree (both p = 0.04). Notwithstanding the
small size of the datasets, the distinctive way in which the
datasets containing more recursion deviate warrants further
investigation. In fact, another example of a similar de-
viation has previously been observed in human language
networks, or “word-webs”. Ferrer i Cancho and Solé [16]
showed that Zipf’s “law” for the frequency of occurrence
of words in English breaks into two scaling regimes for suf-
ficiently large corpi; an effect later reproduced by a simple
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Figure 1: Top panel: log-log plots of truncated power law fits (dashed lines) and 100 realisations of network growth
model (continuous translucent lines) with network degree distribution survival functions (circles, plotted only for degrees
present). Bottom panel: corresponding networks. a female behaviour: p = 0.62; power law exponent 0.37; degree bounds
kmin = 1, kmax = 19; KS difference 0.10. b male behaviour: p = 0.04 (rejected); power law exponent 0.001 (minimum
permitted); degree bounds kmin = 2, kmax = 20; KS difference 0.22. c. male and female behaviour: p = 0.04 (rejected);
power law exponent 0.076; degree bounds kmin = 1, kmax = 22 (2nd highest degree); KS difference 0.18.

network growth algorithm for the undirected topological
word network by Dorogovtsev and Mendes [17]. This orig-
inal algorithm in Ref. [17] added an internal linking pro-
cess to the standard preferential attachment growth algo-
rithm (from Ref. [18]) whereby “internal” edges between
vertices vi and v j were added with probability p ∝ kik j,
where k denotes vertex degree. The DPC networks are far
more densely connected than these word webs however, so
a “saturation” effect appears, whereby the probability of a
particular new edge appearing under such a scheme would
be strongly modified by the probability that it already ex-
ists.

Taking this saturation effect into consideration, Doro-
govtsev and Mendes’ algorithm can be modified such that
the rate of addition of edges is no longer explicit, but in-
stead implicit, depending on the “success” of adding a new
connection. We use here a growth algorithm which instead
selects a constant number r of possible edges at each step
(an edge can be selected more than once) between existing

vertices with p ∝ kik j, and these are added to the network
only if they are not already present. This is a fundamen-
tally different mechanism to the Dorogovtsev and Mendes
algorithm: the edge addition rate truncates at high degree,
which tends to distort the distribution towards these values.
The addition of new vertices occurs in the same way as
the standard preferential attachment algorithm, with a new
vertex joined to old vertices vi by m new edges at each step
with p ∝ ki. The parameters r and m can be defined directly
from the DPC networks and data. It has been observed
that DPC can be characterised by periodic orbits [12], with
mean orbit length > 2, so each new vertex is most likely to
join the network by connecting to 2 existing vertices, i.e.
m = 2. The parameter r can be experimentally varied un-
til the number of edges in the synthetic network matches
the number of edges in the real network on average (for the
same number of vertices). This a priori parameter setting
yields a strikingly good match to the degree distributions
of the male behaviour and male and female behaviour net-
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works without need for parameter fitting (Fig. 1b,c), and a
less convincing fit to the female behaviour network degree
distribution (Fig. 1a).

How can these results be interpreted in terms of brain
criticality? The corresponcence between the level of the
underlying grammar and the breakdown of the power law
fit, is further supported by the success of the simple growth
algorithm in reproducing this effect. Grammars which
express recursion require a second “book-keeping” func-
tion; the DPC networks to which they correspond are also
matched by a two process algorithm, and not by a sin-
gle scale. This suggests that the fingerprint of meso-scale
structure on networks generated by recursive grammars
may not be compatible with criticality. Recursion itself is
essential for higher level abstract reasoning [1], which may
generate functional network structure that is inconsistent
with the notion of brain criticality.

In conclusion, we have presented a clear example of how
power laws may not highlight essential higher functional
processes. Power laws observed by other authors during
brain function, need not be power laws of functional states
themselves. Even so called “functional networks” (e.g.
[11]) are only defined by activity correlations. It is not
clear that the observables studied in claims of brain criti-
cality are active and relevant in cognition. The DPC net-
works by contrast are networks of function, during specific
goal directed behaviour. We suggest that this “network of
function” approach may prove fruitful in the brain critical-
ity debate.
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