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Abstract—We can observe a synchronization state that
in-phase synchronizations and anti-phase synchronizations
alternately exist on a coupled oscillators system as a lad-
der. We call the synchronization state an in-and-anti-phase
synchronization. A wave-motion, which propagates and
switches phase states between adjacent oscillators from the
in-phase synchronization to the anti-phase synchronization
or from the anti-phase synchronization to the in-phase syn-
chronization, can be observed on the in-and-anti-phase syn-
chronization. The wave-motion is called phase-inversion
waves. In this study, we analyze the phase-inversion waves
on the in-and-anti-phase synchronization by using instanta-
neous electric power, and make clear characteristics of the
phase-inversion waves on the in-and-anti-phase synchro-
nization.

1. Introduction

Nowadays, synchronization phenomena are attracting at-
tentions in many fields [1], because a lot of synchroniza-
tions are observed in creations, the outer space, the atomic
world, and so on. Furthermore, synchronization phenom-
ena are used for industrial products which are the commu-
nication systems, the laser, and so on. In other words, we
can not live without synchronization phenomena. The syn-
chronization phenomena can be naturally observed in cou-
pled oscillators systems. The in-phase synchronizations
and the anti-phase synchronizations can be observed in the
coupled oscillators systems that many van der Pol oscilla-
tors are coupled by inductors as a ladder, a 2D lattice or a
3D lattice. Furthermore, a synchronization phenomenon,
that the in-phase synchronization phenomena and the anti-
phase synchronization phenomena are alternately existing,
can be observed in the ladder systems, the 2D lattice sys-
tems, and the 3D lattice systems. We call the synchroniza-
tion phenomenon an in-and-anti-phase synchronization. A
wave-motion which is propagating and switching phase
states between adjacent oscillators from the in-phase syn-
chronization to the anti-phase synchronization or from the
anti-phase synchronization to the in-phase synchronization
can be observed on the in-phase synchronization and the in-
and-anti-phase synchronization in the ladder systems, the
2D lattice systems, and the 3D lattice systems [2]. We
call the wave-motion phase-inversion waves. The phase-
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Figure 1: Circuit model.

inversion waves can be observed in steady states. On the
other hand, waves that phase differences between adjacent
oscillators propagate in transient states can be observed.
The waves are called phase-waves [3]-[4].

In our previous study, we analyzed the phase-waves and
the phase-inversion waves on the in-phase synchronization
in the ladder systems by using instantaneous electric pow-
ers. We investigated itinerancies of the instantaneous elec-
tric power of the phase-waves and of the phase-inversion
waves, and clarified clear differences between the phase-
waves and the phase-inversion waves.

In this study, itinerancies of the instantaneous electric
powers of phase-waves and of phase-inversion waves are
investigated on in-and-anti-phase synchronization. We
make clear differences between phase-waves and phase-
inversion waves. Furthermore, these phase-inversion waves
on the in-and-anti-phase synchronization are compared
from phase-inversion waves on the in-phase synchroniza-
tion which are obtained by using a simulation and an actual
experiment.

2. Circuit model

We show the circuit model of this study is shown in
Fig. 1. The van der Pol oscillators are coupled by induc-
tors as a ladder. The number of oscillators is assumed as
“N.” Each oscillator is named as OSCk. A voltage of each
oscillator is named vk, and a current of an inductor of each
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oscillator is named ik. An equation of the nonlinear neg-
ative resistor is shown as Eq. (1). The circuit equations
are normalized by Eq. (2), and normalized equations are
shown in Eqs. (3)–(4).

f (vk) = −g1vk + g3v3
k (g1, g3 > 0). (1)

ik =

√
Cg1

3Lg3
xk, vk =

√
g1

3g3
yk, t = τ

√
L1Cτ,

α =
L
L0
, ε = g1

√
L
C
. (2)

[Left Edge Oscillator] (k = 1).

dxk

dτ
= yk, (3)

dyk

dτ
= −xk + α{xk+1 − xk} + ε(yk − 1

3
y3

k). (4)

[Middle Oscillators] (1 < k < N).
dxk

dτ
= yk, (5)

dyk

dτ
= −xk + α{xk+1 − 2xk + xk−1} + ε(yk − 1

3
y3

k). (6)

[Right Edge Oscillator] (k = N).
dxk

dτ
= yk, (7)

dyk

dτ
= −xk + α{xk−1 − xk} + ε(yk − 1

3
y3

k). (8)

Instantaneous electric power of each oscillator is named
Pk. Instantaneous electric power of each coupling inductor
L0m is named PL0m. Instantaneous electric power of each
inductor L1k and instantaneous electric power of each ca-
pacitor Ck are named PL1k and PCk respectively. Instan-
taneous electric power of each nonlinear negative resistor
f (vk) is named Pngk. A value of Pk equal the sum of PL1k,
PCk, and Pngk. These powers are calculated by using Eqs.
(9)–(17).
[Coupling Inductors] (1 ≤ m ≤ N − 1).

PL0m = δ
1
ε
α(xm+1 − xm)(ym+1 − ym). (9)

[Capacitor of Left Edge Oscillator].

PC1 = δ
1
ε

y1{α(x2 − x1) − x1 − ε(1
3

y3
1 − y1)}. (10)

[Capacitor of Middle Oscillators] (2 ≤ k ≤ N − 1).

PCk = δ 1
εyk{α(xk+1 − 2xk + xk−1) − xk

−ε( 1
3 y3

k − yk)}. (11)

[Capacitor of Right Edge Oscillator].

PCN = −δ1
ε

yN {α(xN + xN−1) − xN − ε(1
3

y3
N − yN)}. (12)

Figure 2: In-and-anti-phase synchronization.

[Inductors of Each Oscillator] (1 ≤ k ≤ N).

PL1k = δ
1
ε

xkyk. (13)

[Nonlinear Negative Resistors of Each Oscillator]
(1 ≤ k ≤ N).

Pngk = δαyk(
1
3

y3
k − yk). (14)

[Left Edge Oscillator].

P1 = δ
1
ε
α(x2 − x1). (15)

[Middle Oscillators] (2 ≤ k ≤ N − 1).

Pk = δ
1
ε
α(xk+1 − 2xk + xk−1). (16)

[Right Edge Oscillator].

PN = −δ1
ε
α(xN − xN−1). (17)

The α shows coupling parameter and the ε expresses non-
linearity. The δ shows amplitude scale of instantaneous
electric power.

3. Phase-inversion waves on the in-and-anti-phase syn-
chronization.

We observe the phase-inversion waves propagates on an
in-and-anti-phase synchronization in a ladder, and compar-
ing the phase-inversion waves and the phase-waves.

<In-and-anti-phase synchronization.>
The in-and-anti-phase synchronization in a ladder is shown
in Fig. 2. The in-phase synchronization and the anti-phase
synchronization are alternately existing. When the phase
states at the edge are the anti-phase synchronization, the
in-and-anti-phase synchronization is stable.

<Observation conditions.>
We show the phase-waves and the phase-inversion waves
in Figs. 3 and 4 respectively. A set of parameters of which
phase-waves are observed is called Pattern-A, and a set of
parameters of which phase-inversion waves are observed
is called Pattern-B. In this study, we set the following five
observation conditions.
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disappear

Figure 3: Phase-waves in 100 oscillators.

Figure 4: Phase-inversion waves in 100 oscillators.

1. N = 100.
2. δ = 1.
3. Pattern-A : α is 0.06 and ε is 0.30.

Pattern-B : α is 0.10 and ε is 0.10.
4. A basic phase state is fixed as the in-and-anti-

phase synchronization.
5. The waves are generated by which a phase state

between OSC1 and OSC2 is set the in-phase syn-
chronization suddenly.

In the Figs. 3 and 4, 99 rectangular boxes are piled up
vertically. Each box shows phase differences of between
adjacent oscillators. Top of the box shows the phase state
between OSC1 and OSC2, and bottom of the box shows the
phase state between OSC99 and OSC100. The vertical axis
is a sum of voltages of two adjacent oscillators and the hor-
izontal axis is time in each box. In other words, the black
areas are shown the in-phase synchronization and white ar-
eas are shown the anti-phase synchronization. In the Fig.
3, the phase-waves reflect at the bottom and disappear at
the top. In the Fig. 4, we can observe the phase-inversion
waves which are existing.

<Instantaneous electric powers.>
Instantaneous electric powers of OSC19 of above result are
shown in Figs. 5 and 6 respectively. In the Figs. 5 and 6,
the vertical axes are instantaneous electric power and the
horizontal axes are time. The dotted boxes of the Figs. 5
and 6 are closed up and shown in Figs. 7 and 8 respectively.
Only one peak can be observed in propagating the phase-
waves(see Fig. 7). However, two peaks can be observed

Figure 5: Instantaneous electric power of phase-waves at
OSC19.

Figure 6: Instantaneous electric power of phase-inversion
waves at OSC19.

when the phase-inversion waves propagating(see Fig. 8).

4. Comparison between phase-inversion waves on the
in-and-anti-phase synchronizations and on the in-
phase synchronizations

The phase-inversion waves can be observed on the in-
phase synchronizations. We show a simulation result of the
phase-inversion waves on the in-phase synchronizations in
Fig. 9, and an actual circuit experimental result of the
phase-inversion waves in the in-phase synchronizations in
Fig. 10. The number of oscillators is 7 in these results.
In this simulation, the coupling parameter α is 0.1, and the
nonlinearity ε is 0.2. In this actual circuit experiment, L0k

is 494mH±1%, L1k is 52.2mH±1%, Ck is 6.48nF±1%, R1k

is 8.96kΩ±1%, R2k is 8.96kΩ±1%, R3k is 2.35kΩ±1% and
OPAmps are TL082CP.

The instantaneous electric powers of OSC4 of the sim-
ulation result and of the actual circuit experimental result
are shown in Figs. 11 and 12. Two peaks are observed in
both figures. We can observe the same results between the
actual circuit experiment and the simulation. In these re-
sults, we can say that the itinerancy of the instantaneous
electric power of the phase-inversion waves on the in-phase
synchronization has same shape of the itinerancy of the in-
stantaneous electric power of phase-inversion waves on the
in-and-anti-phase synchronization.
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Figure 7: Close up of instantaneous electric power of
phase-waves at OSC19.

Figure 8: Close up of instantaneous electric power of
phase-inversion waves at OSC19.

Figure 9: The simulation results of the phase-inversion
waves in the in-phase synchronization.

Figure 10: The actual experimental result of the phase-
inversion waves in the in-phase synchronization.

5. Conclusion

We investigated the instantaneous electric powers of the
phase-inversions wave and the phase-waves on the in-and-
anti-phase synchronizations in the ladder of coupled van
der Pol oscillators. The instantaneous electric power had
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Figure 11: The simulation result of the power of OSC4 in
the in-phase synchronization.
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Figure 12: The actual experimental result of the power of
OSC4 in the in-phase synchronization.

two peaks when the phase-inversion waves were propa-
gating, and the instantaneous electric power had only one
peak when the phase-waves were propagating. It was clar-
ified that the itinerancy of the instantaneous electric power
of the phase-inversion waves on the in-and-anti-phase syn-
chronization has same shape as the itinerancy of the instan-
taneous electric power of the phase-inversion waves on the
in-phase synchronization.
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