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Abstract— Discrete breathers are spatially localized peri-
odic solutions in nonlinear lattices. We have proved the ex-
istence of multi-pulse discrete breathers in strong localiza-
tion regime in one-dimensional infinite Fermi-Pasta-Ulam-
Tsingou (FPUT) lattices with even interaction potentials.
Exponential localization of those discrete breathers also
have been proved. The multi-pulse discrete breather con-
sists of an arbitrary number of the odd-like and/or even-like
primary discrete breathers located separately on the lattice.
The existence of odd and even symmetric single-pulse dis-
crete breathers is included as particular cases.

1. Introduction

Spatially localized excitation can exist ubiquitously in
nonlinear space-discrete dynamical systems, and it has at-
tracted great interest. Takeno at al. found a time-periodic
and spatially localized mode in the Fermi-Pasta-Ulam-
Tsingou (FPUT) lattice based on approximate analytical
calculation [1, 2]. A few years later, a different type of
the localized mode was also found for the FPUT lattice
[3]. The localized mode is called discrete breather (DB) or
intrinsic localized mode. Considerable progress has been
achieved in understanding the nature of DB so far (e.g.,
[4, 5] and references therein).

The DBs are time-periodic and spatially localized so-
lutions of the equations of motion of nonlinear lattices.
From the mathematical point of view, a fundamental issue
is their existence. The first existence proof of DB was given
for the nonlinear Klein-Gordon lattice, based on the anti-
continuous limit [6]. This limit is a useful concept, and
existence proofs based on it have been given for other lat-
tice models [7, 8, 9]. Stability results for DBs also has been
given near the limit [10, 11, 12, 13, 14, 15].

The FPUT lattice is one of the fundamental lattice mod-
els in physics, to which the anti-continuous limit approach
is not applicable. Normalized spatial profiles of two types
of single-pulse DBs, which are called odd and even modes,
are approximately given by (...,0,-1/2,1,-1/2,0,...)
[1,2] and (...,0,—1,1,0,...) [3] in the regime of strong
localization, respectively. In addition, multi-pulse DBs also
have been found numerically [16].

For the FPUT model, the first existence proof of the odd
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and even DBs was given in a particular case of the homo-
geneous potential [17]. In the more general case of non-
homogeneous potentials, an existence proof was given for
weakly localized odd and even DBs by using a center man-
ifold reduction technique [18]. The existence of strongly
localized odd and even DBs has been proved recently for
finite FPUT lattices [19]. The present theorem is its ex-
tension to the case of infinite FPUT lattices. In addition
to the single-pulse DBs, the theorem ensures the existence
of infinitely many multi-pulse DBs and their exponential
localization.

2. Lattice model

We consider the one-dimensional infinite FPUT lattice
described by the equations of motion

gi=pi, pi=V'@Qn—q9)-V(gi—qi-), i€Z, (1)
where ¢;, p; € R are the position and momentum of ith par-
ticle of unit-mass, respectively, and V is a potential func-
tion of the nearest neighbor interaction. Equation (1) forms
an infinite system of ordinary differential equations, which

has the Hamiltonian

H= i %pf + i V(gis1 = q)-

i=—00 i=—0c0

Equation (1) is derived by ¢; = dH/dp; and p; = —0H/dq;.
Let X € R and u € R be a parameter. We assume the
interaction potential V to be defined by

V(X) = uW(X) + %X", )

where:

(P1) k> 4is an even integer;
(P2) W(X):R — Risa C? function of X;
P3) W(X)=W(-X)for VX € R and W(0) = 0.

Condition (P3) ensures that V(X) is an even function of
X. A typical non-homogeneous potential often used in the
literature is a polynomial potential. Equation (2) reduces to
this case when W is an even polynomial of order less than
kie, WX) = S, X7
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3. Sequence and function spaces

Let 1*(Z) be the Hilbert space of square-summable
two-sided real-valued sequences endowed with the norm
llzllz = V{x,x), which is derived from the inner product
(T, Y) = Yiez Xiyi» Where T = (x;)icz and y = (y)iez- Let
q = (¢)icz € P(Z) and p = (p;)icz € P(Z). We choose the
phase space of Eq. (1) as Q = [>(Z) x [>(Z) with the norm

lgll2 + lipI2,

llzllo =
where z = (z))icz € Q and z; = (g;, pi) € R2. The phase
space Q is also the Hilbert space.
Let C(}(R; Q) be the space of T-periodic continuous
functions z(f) : R — Q that is endowed with the norm

lizllo = sup llz(®lle.
1€[0,T]
Let C IT(R; Q) be the space of T-periodic continuously dif-

ferentiable functions z(f) : R — Q that is endowed with
the norm

llzlli = sup [lz(Dlla + sup [[2(1)llo.
t€[0,T] t€[0,T]
Both CJ(R; Q) and CJ.(R; Q) are Banach spaces.
Let X; C C}(R; Q) and X, C C(;(R; Q) be the subspaces
defined by

X = {(Cli(f),]?i(l))iez; qi(=1) = qi(1), pi(=1) = —=pi(0),
qi(t + T/2) = —qi(0), pilt +T/2) = =pi(0), i € Z|

and

Xo = {(sit), r®iez s si(=1) = =si(8), ri(—1) = ri(0),
silt+T/2) = =si(t), rit + T/2) = =ri(0), i € Z}.

Both X; and X, are Banach spaces.

In order to discuss the exponential localization property,
we need to measure the amplitude of each component z;(¢)
of a DB solution z(¢). Let Clr(R; R?) be the space of T-
periodic continuously differentiable functions with values
in R?. We define the norm of CJ.(R; R?) as follows:

|zli = sup |z(®)] + sup [z(7)],
t€[0,T] te[0,T]

where z(t) = (q(t), p(t)) € R? and | - | represents the Eu-
clidean norm of R2. Then, it is a Banach space.
Letb; C CIT(R; R?) be the subspace defined by

bi = {(q,p®); g1 = q(r), p(=1) = =p(1),
q(t+T/2) = =q(1), p(t+T/2) = =p(®) }.

This space is obtained by imposing C;(R;Rz) the same
type of temporal symmetries as to those of X;. Each com-
ponent of any z € X; can be regarded as an element of
by.

4. Approximation of DB solutions

We describe the odd and even symmetries. Let S and
S g be the linear mappings S, Sg : Q — Q defined by

So: (Soz)i=2z, 1€Z,
SE: (Sg2)i = —2-G+1), 1EZ,

where z; = (¢q;, pi) and 2z = (2;)iez € Q. A T-periodic solu-
tion z(f) € X; of Eq. (1) is said to have odd (resp. even)
symmetry if it satisfies the condition Spz(f) = =z(¥)
(resp. Sgz(t) = z(t)) for V¢ € R. The odd and even sym-
metric solutions have a spatial profile centered at i = 0 site
and that centered between i = —1 and O sites, respectively.

Our existence theorem uses approximations for the spa-
tial profiles of DB solutions. Let af = (aio)iez and af =
(aﬁE )iez be two-sided real-valued bounded sequences, each
of which satisfies the condition that there are i;, i, € Z and
a’ # 0 only for iy < i < ip, otherwise a} = 0, where the
superscript x represents the sequence type O or E. We will
choose a” and af as in Table 1 to approximate the odd and
even single-pulse DB profiles in a lattice with 4 = 0 and an
even integer k > 4.

Approximations for the profiles of multi-pulse DBs are
constructed by combining a® and/or a®. Given m € Z and
a sequence = (x;)iez, let 7, be the m-site shift operator
defined by

(7~mx)l = Xim, L€ Z.
Letn € N, X = (X1,....%,) € (O.E)", 8 = (01,....,6,) €

{(-1,1}",and m = (m;, ..., m,) € Z". Given (%, 9, in), define
the superposition of shifted a® and/or af as follows:

Sxan = ), 0; Tw@™. 3)
j=1

For each 7,,,a™ in the sum, we define its support by
J(Twa) = (i €Z: (T,,a%) #0}.
This support is a finite set since each of a® and a has only
a finite number of consecutive nonzero elements. When
J(‘ija"/) ={i, i1 +1,...,0}, let J_(‘Tml,a"/) be the set de-
fined by
J_(Tm/.ax/) =J(Tma”)Utip — 1,ip + 1},
which is an extended support by adding two adjacent sites

of J(T;a™). Using these notations, we define the ex-
tended support of s5 57 by

Tsxam) = JIT,a™).
j=1
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5. Main results
Consider the scalar differential equation
$+otl =0,

where k > 4 is an even integer. Given any T > 0, let ¢(t; T)
be its T-periodic solution with initial conditions ¢(0; T") >
0 and ¢(0;T) =

Letl;,l, € Z, I} < b, and D, ,(l;,15) C I(Z) be a closed
convex subset defined by

1y —i
slxl <cforly <i<b, |x| < er®™D

Des(lh.b) = (@

fori <l — 1, x| <cr® Y fori> b+ 1 }

where ¢ > 0 and O < r < 1. This subset D, (I}, ) is spec-
ified by the four parameters (I, I, ¢, ), and the interval of
x; rapidly (super-exponentially) decreases with increasing
lil in D. (11, 7). The existence theorem is stated as follows.
Its proof of the existence part is given in Ref. [20].

Theorem 5.1 Suppose V(X) of Eq. (2) and (P1)-(P3). Fix
the value of k and choose a® = (aio),-ez, a® = (aﬁE )iez, and
(c,7) as in Table 1. Let s, be a superposition given by
Eq. (3) such that J(T,,,a*) 0 J(Ty,a™) = ¢ for any i # j.
Let I} = min J(sg ;) and I, = max J(sg g,). Then, for any
T > 0, there exists a unique x € D, (I}, ;) such that

Lot; T) = (uip(t; T), ui(t; T) )z,

with (u;)icz = Szgm +  is a T-periodic solution of FPUT
lattice (1) with u = 0. Moreover, there exist uy > 0 and
a family T'(t; T, p) of T-periodic solutions of FPUT lattice
(1) for u € [—uo, 1ol such that it is a unique continuation
of To(t; T) in X, continuous with respect to u and exponen-
tially localized in space, i.e., there exist K > 0, h > 0, and
p € (0, 1) such that components z;(u) of I'(¢; T, ) satisfy

Lzl < K exp (hlul) p" 4

SJoralli € Z. If sggm = a? (resp. a®), then T'(t; T, i) has
odd (resp. even) symmetry.

6. Strategy of the proof of Theorem 5.1

The DB solutions of Eq. (1) are formulated as zeros of
the following u-dependent operator ¥, i.e., z such that
Flz,n)=0

Definition 6.1 Let 7 : X; X R — X be the operator de-
fined as follows:

F(z,u) =w (z,n) € X1 XR,

where, denoting z = (q;, pi)icz and w = (s;, 1i)icz, we have

si = qi— Di

-V (qis1 —q) + V(g

ri = qi-1),

with V given by Eq. (2).

ag =0.3762, agl = -0.1968,
ao = 0.00867, aOE = E = 0.32301,
k=4 af:—a , = —0053551
a;” OF — (otherwise)
(c,r) =(0.0015, 0.02)
ag = 0.50566, agl = —0.25391,
=6 agz =0.00108, ao = =0.4166,
af = -af 2, =-0.015, aOE = 0 (otherwise)
(c,r)=(12x10"%,9x%x10™)
= 0.55502, agl = -0.27764,
af = = 0.44484,
k=28 o O.E
ay = —a® 2, = —0.00365, a,”" = 0 (otherwise)
(c,)=(2x10™*, 8x 107*)
=0.58111, afl = —-0.29057,
ag = E = 0.45839,
k=10 af —az——9l><10‘4
al.O’E = 0 (otherwise)
(c,r) =(3%x1073,2x107*)

= 0.59730, a2, = —0.29865,
k=12 | af =-af =0.46649, a”* = 0 (otherwise)
(c,r)=(4%x1074,9%x107%)

g =2 x 3~ k-D/Gk-2) agl = —3-*k=D/(k-2)

o s | aE=—af = (2D,
= 0.E _ .
a;"” = 0 (otherwise)

(c,r) = (3(1 + 21 DI 5 103)

Table 1

We outline our proof of existence of the DB solution
I'(t; T,u). The proof consists of two steps. In the first
step, we consider the homogeneous potential FPUT lattice
which is described by Eq. (1) with the potential V(X) =
X*/k, ie., u = 0in Eq. (2). In this particular lattice, it is
possible to find a DB solution in the form ¢ = u¢(s; T),
where u = (u))iez € I*(Z) is a time-independent constant
vector describing the spatial profile of the solution. Given
an approximate profile sz, the vector w is determined
by solving a set of infinite algebraic equations in a neigh-
borhood of s; 5, with use of Banach’s fixed point theo-
rem. The obtained solution is I'g(z; 7). That is, we have
F(29,0) = 0, where zy := T'g(t;T). In the second step,
we consider the non-homogeneous potential FPUT lattice,
ie., u # 0in Eq. (2). Let DF (z, u) be the Fréchet deriva-
tive of ¥ (z,u) with respect to z. It is possible to prove
that DF (z, u) is invertible at (zp,0). The solution z; is
uniquely continued to a non-homogeneous potential lattice
for small u # 0 in X; by applying the implicit function the-
orem to F(z,u) = 0. Then, z(u) = I'(t; T, u) is obtained
for u small enough as the function such that ¥ (z(w), ) = 0
and z(0) = zy.
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The implicit function theorem tells that z(u) satisfies the
following differential equation defined in X:

d _
i = -DF (2, 1) - Fulz, ), o

where F,(z, u) is the Fréchet derivative of ¥ with respect
to p. The linear operator DF (z, 1) has the block tridiag-
onal form. MacKay and Aubry proved a lemma that if a
block tridiagonal operator is invertible then elements of the
inverse matrix decay exponentially with distance from the
diagonal [6]. The exponential localization of z(u) is proved
by using a slightly modified version of the lemma.
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