Existence of multi-pulse discrete breathers in Fermi-Pasta-Ulam-Tsingou lattices

Kazuyuki Yoshimura
Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
Email: kazuyuki@tottori-u.ac.jp

Abstract

Discrete breathers are spatially localized periodic solutions in nonlinear lattices. We have proved the existence of multi-pulse discrete breathers in strong localization regime in one-dimensional infinite Fermi-Pasta-UlamTsingou (FPUT) lattices with even interaction potentials. Exponential localization of those discrete breathers also have been proved. The multi-pulse discrete breather consists of an arbitrary number of the odd-like and/or even-like primary discrete breathers located separately on the lattice. The existence of odd and even symmetric single-pulse discrete breathers is included as particular cases.

1. Introduction

Spatially localized excitation can exist ubiquitously in nonlinear space-discrete dynamical systems, and it has attracted great interest. Takeno at al. found a time-periodic and spatially localized mode in the Fermi-Pasta-UlamTsingou (FPUT) lattice based on approximate analytical calculation [1,2]. A few years later, a different type of the localized mode was also found for the FPUT lattice [3]. The localized mode is called discrete breather (DB) or intrinsic localized mode. Considerable progress has been achieved in understanding the nature of DB so far (e.g., [4, 5] and references therein).

The DBs are time-periodic and spatially localized solutions of the equations of motion of nonlinear lattices. From the mathematical point of view, a fundamental issue is their existence. The first existence proof of DB was given for the nonlinear Klein-Gordon lattice, based on the anticontinuous limit [6]. This limit is a useful concept, and existence proofs based on it have been given for other lattice models $[7,8,9]$. Stability results for DBs also has been given near the limit $[10,11,12,13,14,15]$.

The FPUT lattice is one of the fundamental lattice models in physics, to which the anti-continuous limit approach is not applicable. Normalized spatial profiles of two types of single-pulse DBs, which are called odd and even modes, are approximately given by ($\ldots, 0,-1 / 2,1,-1 / 2,0, \ldots$) $[1,2]$ and $(\ldots, 0,-1,1,0, \ldots)$ [3] in the regime of strong localization, respectively. In addition, multi-pulse DBs also have been found numerically [16].

For the FPUT model, the first existence proof of the odd

[^0]and even DBs was given in a particular case of the homogeneous potential [17]. In the more general case of nonhomogeneous potentials, an existence proof was given for weakly localized odd and even DBs by using a center manifold reduction technique [18]. The existence of strongly localized odd and even DBs has been proved recently for finite FPUT lattices [19]. The present theorem is its extension to the case of infinite FPUT lattices. In addition to the single-pulse DBs, the theorem ensures the existence of infinitely many multi-pulse DBs and their exponential localization.

2. Lattice model

We consider the one-dimensional infinite FPUT lattice described by the equations of motion

$$
\begin{equation*}
\dot{q}_{i}=p_{i}, \quad \dot{p}_{i}=V^{\prime}\left(q_{i+1}-q_{i}\right)-V^{\prime}\left(q_{i}-q_{i-1}\right), \quad i \in \mathbb{Z} \tag{1}
\end{equation*}
$$

where $q_{i}, p_{i} \in \mathbb{R}$ are the position and momentum of i th particle of unit-mass, respectively, and V is a potential function of the nearest neighbor interaction. Equation (1) forms an infinite system of ordinary differential equations, which has the Hamiltonian

$$
H=\sum_{i=-\infty}^{\infty} \frac{1}{2} p_{i}^{2}+\sum_{i=-\infty}^{\infty} V\left(q_{i+1}-q_{i}\right)
$$

Equation (1) is derived by $\dot{q}_{i}=\partial H / \partial p_{i}$ and $\dot{p}_{i}=-\partial H / \partial q_{i}$.
Let $X \in \mathbb{R}$ and $\mu \in \mathbb{R}$ be a parameter. We assume the interaction potential V to be defined by

$$
\begin{equation*}
V(X)=\mu W(X)+\frac{1}{k} X^{k}, \tag{2}
\end{equation*}
$$

where:
(P1) $k \geq 4$ is an even integer;
(P2) $W(X): \mathbb{R} \rightarrow \mathbb{R}$ is a C^{3} function of X;
(P3) $W(X)=W(-X)$ for $\forall X \in \mathbb{R}$ and $W(0)=0$.
Condition (P3) ensures that $V(X)$ is an even function of X. A typical non-homogeneous potential often used in the literature is a polynomial potential. Equation (2) reduces to this case when W is an even polynomial of order less than k, i.e., $W(X)=\sum_{r=1}^{k / 2-1} \kappa_{2 r} X^{2 r}$.

3. Sequence and function spaces

Let $l^{2}(\mathbb{Z})$ be the Hilbert space of square-summable two-sided real-valued sequences endowed with the norm $\|\boldsymbol{x}\|_{1^{2}}=\sqrt{\langle\boldsymbol{x}, \boldsymbol{x}\rangle}$, which is derived from the inner product $\langle\boldsymbol{x}, \boldsymbol{y}\rangle=\sum_{i \in \mathbb{Z}} x_{i} y_{i}$, where $\boldsymbol{x}=\left(x_{i}\right)_{i \in \mathbb{Z}}$ and $\boldsymbol{y}=\left(y_{i}\right)_{i \in \mathbb{Z}}$. Let $\boldsymbol{q}=\left(q_{i}\right)_{i \in \mathbb{Z}} \in l^{2}(\mathbb{Z})$ and $\boldsymbol{p}=\left(p_{i}\right)_{i \in \mathbb{Z}} \in l^{2}(\mathbb{Z})$. We choose the phase space of Eq. (1) as $\Omega=l^{2}(\mathbb{Z}) \times l^{2}(\mathbb{Z})$ with the norm

$$
\|\boldsymbol{z}\|_{\Omega}=\sqrt{\|\boldsymbol{q}\|_{l^{2}}^{2}+\|\boldsymbol{p}\|_{2^{2}}^{2}},
$$

where $\boldsymbol{z}=\left(z_{i}\right)_{i \in \mathbb{Z}} \in \Omega$ and $z_{i}=\left(q_{i}, p_{i}\right) \in \mathbb{R}^{2}$. The phase space Ω is also the Hilbert space.

Let $C_{T}^{0}(\mathbb{R} ; \Omega)$ be the space of T-periodic continuous functions $\boldsymbol{z}(t): \mathbb{R} \rightarrow \Omega$ that is endowed with the norm

$$
\|z\|_{0}=\sup _{t \in[0, T]}\|z(t)\|_{\Omega} .
$$

Let $C_{T}^{1}(\mathbb{R} ; \Omega)$ be the space of T-periodic continuously differentiable functions $\boldsymbol{z}(t): \mathbb{R} \rightarrow \Omega$ that is endowed with the norm

$$
\|\boldsymbol{z}\|_{1}=\sup _{t \in[0, T]}\|\boldsymbol{z}(t)\|_{\Omega}+\sup _{t \in[0, T]}\|\dot{\boldsymbol{z}}(t)\|_{\Omega} .
$$

Both $C_{T}^{0}(\mathbb{R} ; \Omega)$ and $C_{T}^{1}(\mathbb{R} ; \Omega)$ are Banach spaces.
Let $X_{1} \subset C_{T}^{1}(\mathbb{R} ; \Omega)$ and $X_{0} \subset C_{T}^{0}(\mathbb{R} ; \Omega)$ be the subspaces defined by

$$
\begin{aligned}
X_{1}=\{ & \left(q_{i}(t), p_{i}(t)\right)_{i \in \mathbb{Z}} ; q_{i}(-t)=q_{i}(t), p_{i}(-t)=-p_{i}(t), \\
& \left.q_{i}(t+T / 2)=-q_{i}(t), p_{i}(t+T / 2)=-p_{i}(t), i \in \mathbb{Z}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
X_{0}= & \left\{\left(s_{i}(t), r_{i}(t)\right)_{i \in \mathbb{Z}} ; s_{i}(-t)=-s_{i}(t), r_{i}(-t)=r_{i}(t),\right. \\
& \left.s_{i}(t+T / 2)=-s_{i}(t), r_{i}(t+T / 2)=-r_{i}(t), i \in \mathbb{Z}\right\} .
\end{aligned}
$$

Both X_{1} and X_{0} are Banach spaces.
In order to discuss the exponential localization property, we need to measure the amplitude of each component $z_{i}(t)$ of a DB solution $\boldsymbol{z}(t)$. Let $C_{T}^{1}\left(\mathbb{R} ; \mathbb{R}^{2}\right)$ be the space of T periodic continuously differentiable functions with values in \mathbb{R}^{2}. We define the norm of $C_{T}^{1}\left(\mathbb{R} ; \mathbb{R}^{2}\right)$ as follows:

$$
|z|_{1}=\sup _{t \in[0, T]}|z(t)|+\sup _{t \in[0, T]}|\dot{z}(t)|,
$$

where $z(t)=(q(t), p(t)) \in \mathbb{R}^{2}$ and $|\cdot|$ represents the Euclidean norm of \mathbb{R}^{2}. Then, it is a Banach space.

Let $b_{1} \subset C_{T}^{1}\left(\mathbb{R} ; \mathbb{R}^{2}\right)$ be the subspace defined by

$$
\begin{aligned}
& b_{1}=\{(q(t), p(t)) ; q(-t)=q(t), p(-t)=-p(t) \\
&q(t+T / 2)=-q(t), p(t+T / 2)=-p(t)\} .
\end{aligned}
$$

This space is obtained by imposing $C_{T}^{1}\left(\mathbb{R} ; \mathbb{R}^{2}\right)$ the same type of temporal symmetries as to those of X_{1}. Each component of any $\boldsymbol{z} \in X_{1}$ can be regarded as an element of b_{1}.

4. Approximation of DB solutions

We describe the odd and even symmetries. Let S_{O} and S_{E} be the linear mappings $S_{O}, S_{E}: \Omega \rightarrow \Omega$ defined by

$$
\begin{aligned}
& S_{O}:\left(S_{O} \boldsymbol{z}\right)_{i}=z_{-i}, \quad i \in \mathbb{Z}, \\
& S_{E}:\left(S_{E} \boldsymbol{z}\right)_{i}=-z_{-(i+1)}, \quad i \in \mathbb{Z},
\end{aligned}
$$

where $z_{i}=\left(q_{i}, p_{i}\right)$ and $\boldsymbol{z}=\left(z_{i}\right)_{i \in \mathbb{Z}} \in \Omega$. A T-periodic solution $z(t) \in X_{1}$ of Eq. (1) is said to have odd (resp. even) symmetry if it satisfies the condition $S_{O} \boldsymbol{z}(t)=\boldsymbol{z}(t)$ (resp. $\left.S_{E} \boldsymbol{z}(t)=\boldsymbol{z}(t)\right)$ for $\forall t \in \mathbb{R}$. The odd and even symmetric solutions have a spatial profile centered at $i=0$ site and that centered between $i=-1$ and 0 sites, respectively.

Our existence theorem uses approximations for the spatial profiles of DB solutions. Let $\boldsymbol{a}^{O}=\left(a_{i}^{O}\right)_{i \in \mathbb{Z}}$ and $\boldsymbol{a}^{E}=$ $\left(a_{i}^{E}\right)_{i \in \mathbb{Z}}$ be two-sided real-valued bounded sequences, each of which satisfies the condition that there are $i_{1}, i_{2} \in \mathbb{Z}$ and $a_{i}^{\mathrm{x}} \neq 0$ only for $i_{1} \leq i \leq i_{2}$, otherwise $a_{i}^{\mathrm{x}}=0$, where the superscript x represents the sequence type O or E. We will choose \boldsymbol{a}^{O} and \boldsymbol{a}^{E} as in Table 1 to approximate the odd and even single-pulse DB profiles in a lattice with $\mu=0$ and an even integer $k \geq 4$.

Approximations for the profiles of multi-pulse DBs are constructed by combining \boldsymbol{a}^{O} and/or \boldsymbol{a}^{E}. Given $m \in \mathbb{Z}$ and a sequence $\boldsymbol{x}=\left(x_{i}\right)_{i \in \mathbb{Z}}$, let \mathcal{T}_{m} be the m-site shift operator defined by

$$
\left(\mathcal{T}_{m} \boldsymbol{x}\right)_{i}=x_{i-m}, \quad i \in \mathbb{Z} .
$$

Let $n \in \mathbb{N}, \overline{\mathrm{x}}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right) \in\{O, E\}^{n}, \bar{\theta}=\left(\theta_{1}, \ldots, \theta_{n}\right) \in$ $\{-1,1\}^{n}$, and $\bar{m}=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}^{n}$. Given $(\overline{\mathrm{x}}, \bar{\theta}, \bar{m})$, define the superposition of shifted \boldsymbol{a}^{O} and/or \boldsymbol{a}^{E} as follows:

$$
\begin{equation*}
s_{\overline{\mathrm{x}}, \bar{\theta}, \bar{m}}=\sum_{j=1}^{n} \theta_{j} \cdot \mathcal{T}_{m_{j}} \boldsymbol{a}^{\mathrm{x}_{j}} . \tag{3}
\end{equation*}
$$

For each $\mathcal{T}_{m_{j}} \boldsymbol{a}^{\mathrm{x}_{j}}$ in the sum, we define its support by

$$
J\left(\mathcal{T}_{m_{j}} \boldsymbol{a}^{\mathrm{x}_{j}}\right)=\left\{i \in \mathbb{Z} ;\left(\mathcal{T}_{m_{j}} \boldsymbol{a}^{\mathrm{x}_{j}}\right)_{i} \neq 0\right\} .
$$

This support is a finite set since each of \boldsymbol{a}^{O} and \boldsymbol{a}^{E} has only a finite number of consecutive nonzero elements. When $J\left(\mathcal{T}_{m_{j}} \boldsymbol{a}^{\mathrm{x}_{j}}\right)=\left\{i_{1}, i_{1}+1, \ldots, i_{2}\right\}$, let $\bar{J}\left(\mathcal{T}_{m_{j}} \boldsymbol{a}^{\mathrm{x}_{j}}\right)$ be the set defined by

$$
\bar{J}\left(\mathcal{T}_{m_{j}} \boldsymbol{a}^{\mathrm{x}_{j}}\right)=J\left(\mathcal{T}_{m_{j}} \boldsymbol{a}^{\mathrm{x}_{j}}\right) \cup\left\{i_{1}-1, i_{2}+1\right\},
$$

which is an extended support by adding two adjacent sites of $J\left(\mathcal{T}_{m_{j}} \boldsymbol{a}^{\mathrm{x}_{j}}\right)$. Using these notations, we define the extended support of $s_{\overline{\mathrm{x}}, \overline{,}, \bar{m}}$ by

$$
\bar{J}\left(s_{\overline{\mathrm{x}}, \bar{\theta}, \bar{m}}\right)=\bigcup_{j=1}^{n} \bar{J}\left(\mathcal{T}_{m_{j}} a^{\mathrm{x}_{j}}\right) .
$$

5. Main results

Consider the scalar differential equation

$$
\ddot{\phi}+\phi^{k-1}=0,
$$

where $k \geq 4$ is an even integer. Given any $T>0$, let $\phi(t ; T)$ be its T-periodic solution with initial conditions $\phi(0 ; T)>$ 0 and $\dot{\phi}(0 ; T)=0$.

Let $l_{1}, l_{2} \in \mathbb{Z}, l_{1} \leq l_{2}$ and $D_{c, r}\left(l_{1}, l_{2}\right) \subset l^{2}(\mathbb{Z})$ be a closed convex subset defined by

$$
\begin{aligned}
D_{c, r}\left(l_{1}, l_{2}\right)= & \left\{\boldsymbol{x} ;\left|x_{i}\right| \leq c \text { for } l_{1} \leq i \leq l_{2},\left|x_{i}\right| \leq c r^{(k-1)^{l_{1}-i}}\right. \\
& \text { for } \left.i \leq l_{1}-1,\left|x_{i}\right| \leq c r^{(k-1)^{i-l_{2}}} \text { for } i \geq l_{2}+1\right\},
\end{aligned}
$$

where $c>0$ and $0<r<1$. This subset $D_{c, r}\left(l_{1}, l_{2}\right)$ is specified by the four parameters $\left(l_{1}, l_{2}, c, r\right)$, and the interval of x_{i} rapidly (super-exponentially) decreases with increasing $|i|$ in $D_{c, r}\left(l_{1}, l_{2}\right)$. The existence theorem is stated as follows. Its proof of the existence part is given in Ref. [20].

Theorem 5.1 Suppose $V(X)$ of Eq. (2) and (P1)-(P3). Fix the value of k and choose $\boldsymbol{a}^{O}=\left(a_{i}^{O}\right)_{i \in \mathbb{Z}}, \boldsymbol{a}^{E}=\left(a_{i}^{E}\right)_{i \in \mathbb{Z}}$, and (c, r) as in Table 1. Let $s_{\bar{x}, \bar{\theta}, \bar{m}}$ be a superposition given by Eq. (3) such that $\bar{J}\left(\mathcal{T}_{m_{i}} \boldsymbol{a}^{\mathbf{x}_{i}}\right) \cap \bar{J}\left(\mathcal{T}_{m_{j}} \boldsymbol{a}^{\mathrm{x}_{j}}\right)=\phi$ for any $i \neq j$. Let $l_{1}=\min \bar{J}\left(s_{\bar{x}, \bar{\theta}, \bar{m}}\right)$ and $l_{2}=\max \bar{J}\left(s_{\bar{x}, \bar{\theta}, \bar{m}}\right)$. Then, for any $T>0$, there exists a unique $\boldsymbol{x} \in D_{c, r}\left(l_{1}, l_{2}\right)$ such that

$$
\Gamma_{0}(t ; T)=\left(u_{i} \phi(t ; T), u_{i} \dot{\phi}(t ; T)\right)_{i \in \mathbb{Z}}
$$

with $\left(u_{i}\right)_{i \in \mathbb{Z}}=s_{\overline{\mathrm{x}}, \bar{\theta}, \bar{m}}+\boldsymbol{x}$ is a T-periodic solution of FPUT lattice (1) with $\mu=0$. Moreover, there exist $\mu_{0}>0$ and a family $\Gamma(t ; T, \mu)$ of T-periodic solutions of FPUT lattice (1) for $\mu \in\left[-\mu_{0}, \mu_{0}\right]$ such that it is a unique continuation of $\boldsymbol{\Gamma}_{0}(t ; T)$ in X_{1} continuous with respect to μ and exponentially localized in space, i.e., there exist $K>0, h>0$, and $\rho \in(0,1)$ such that components $z_{i}(\mu)$ of $\boldsymbol{\Gamma}(t ; T, \mu)$ satisfy

$$
\begin{equation*}
\left|z_{i}(\mu)\right|_{1} \leq K \exp (h|\mu|) \rho^{|i|} \tag{4}
\end{equation*}
$$

for all $i \in \mathbb{Z}$. If $s_{\bar{x}, \bar{\theta}, \bar{m}}=\boldsymbol{a}^{O}\left(\right.$ resp. $\left.\boldsymbol{a}^{E}\right)$, then $\boldsymbol{\Gamma}(t ; T, \mu)$ has odd (resp. even) symmetry.

6. Strategy of the proof of Theorem 5.1

The DB solutions of Eq. (1) are formulated as zeros of the following μ-dependent operator \mathcal{F}, i.e., \boldsymbol{z} such that $\mathcal{F}(\boldsymbol{z}, \mu)=\mathbf{0}$.

Definition 6.1 Let $\mathcal{F}: X_{1} \times \mathbb{R} \rightarrow X_{0}$ be the operator defined as follows:

$$
\mathcal{F}(z, \mu)=w, \quad(z, \mu) \in X_{1} \times \mathbb{R}
$$

where, denoting $\boldsymbol{z}=\left(q_{i}, p_{i}\right)_{i \in \mathbb{Z}}$ and $\boldsymbol{w}=\left(s_{i}, r_{i}\right)_{i \in \mathbb{Z}}$, we have

$$
\begin{aligned}
s_{i} & =\dot{q}_{i}-p_{i} \\
r_{i} & =\dot{p}_{i}-V^{\prime}\left(q_{i+1}-q_{i}\right)+V^{\prime}\left(q_{i}-q_{i-1}\right)
\end{aligned}
$$

with V given by Eq. (2).

$k=4$	$\begin{aligned} & a_{0}^{O}=0.3762, a_{ \pm 1}^{O}=-0.1968, \\ & a_{ \pm 2}^{O}=0.00867, a_{0}^{E}=-a_{-1}^{E}=0.32301, \\ & a_{1}^{E}=-a_{-2}^{E}=-0.053551, \\ & a_{i}^{O, E}=0 \text { (otherwise) } \\ & (c, r)=(0.0015,0.02) \end{aligned}$
$k=6$	$\begin{aligned} & a_{0}^{O}=0.50566, a_{ \pm 1}^{O}=-0.25391, \\ & a_{ \pm 2}^{O}=0.00108, a_{0}^{E}=-a_{-1}^{E}=0.4166, \\ & a_{1}^{E}=-a_{-2}^{E}=-0.015, a_{i}^{O, E}=0(\text { otherwise }) \\ & (c, r)=\left(1.2 \times 10^{-4}, 9 \times 10^{-4}\right) \end{aligned}$
$k=8$	$\begin{aligned} & a_{0}^{O}=0.55502, a_{ \pm 1}^{O}=-0.27764 \\ & a_{0}^{E}=-a_{-1}^{E}=0.44484, \\ & a_{1}^{E}=-a_{-2}^{E}=-0.00365, a_{i}^{O, E}=0(\text { otherwise }) \\ & (c, r)=\left(2 \times 10^{-4}, 8 \times 10^{-4}\right) \end{aligned}$
$k=10$	$\begin{aligned} & a_{0}^{O}=0.58111, a_{ \pm 1}^{O}=-0.29057, \\ & a_{0}^{E}=-a_{-1}^{E}=0.45839, \\ & a_{1}^{E}=-a_{-2}^{E}=-9.1 \times 10^{-4}, \\ & a_{i}^{O, E}=0(\text { otherwise }) \\ & (c, r)=\left(3 \times 10^{-5}, 2 \times 10^{-4}\right) \end{aligned}$
$k=12$	$\begin{aligned} & a_{0}^{O}=0.59730, a_{ \pm 1}^{O}=-0.29865 \\ & a_{0}^{E}=-a_{-1}^{E}=0.46649, a_{i}^{O, E}=0(\text { otherwise }) \\ & (c, r)=\left(4 \times 10^{-4}, 9 \times 10^{-4}\right) \end{aligned}$
$k \geq 14$	$\begin{aligned} & a_{0}^{O}=2 \times 3^{-(k-1) /(k-2)}, a_{ \pm 1}^{O}=-3^{-(k-1) /(k-2)}, \\ & a_{0}^{E}=-a_{-1}^{E}=\left(1+2^{k-1}\right)^{-1 /(k-2)}, \\ & a_{i}^{O, E}=0(\text { otherwise }) \\ & (c, r)=\left(3\left(1+2^{k-1}\right)^{-(k-1) /(k-2)}, 1 \times 10^{-3}\right) \end{aligned}$

Table 1
We outline our proof of existence of the DB solution $\Gamma(t ; T, \mu)$. The proof consists of two steps. In the first step, we consider the homogeneous potential FPUT lattice which is described by Eq. (1) with the potential $V(X)=$ X^{k} / k, i.e., $\mu=0$ in Eq. (2). In this particular lattice, it is possible to find a DB solution in the form $\boldsymbol{q}=\boldsymbol{u} \phi(t ; T)$, where $\boldsymbol{u}=\left(u_{i}\right)_{i \in \mathbb{Z}} \in l^{2}(\mathbb{Z})$ is a time-independent constant vector describing the spatial profile of the solution. Given an approximate profile $s_{\overline{\mathbf{x}}, \bar{\theta}, \bar{m}}$, the vector \boldsymbol{u} is determined by solving a set of infinite algebraic equations in a neighborhood of $s_{\bar{x}, \bar{\theta}, \bar{m}}$ with use of Banach's fixed point theorem. The obtained solution is $\Gamma_{0}(t ; T)$. That is, we have $\mathcal{F}\left(z_{0}, 0\right)=0$, where $z_{0}:=\Gamma_{0}(t ; T)$. In the second step, we consider the non-homogeneous potential FPUT lattice, i.e., $\mu \neq 0$ in Eq. (2). Let $D \mathcal{F}(\boldsymbol{z}, \mu)$ be the Fréchet derivative of $\mathcal{F}(\boldsymbol{z}, \mu)$ with respect to \boldsymbol{z}. It is possible to prove that $D \mathcal{F}(\boldsymbol{z}, \mu)$ is invertible at $\left(z_{0}, 0\right)$. The solution \boldsymbol{z}_{0} is uniquely continued to a non-homogeneous potential lattice for small $\mu \neq 0$ in X_{1} by applying the implicit function theorem to $\mathcal{F}(\boldsymbol{z}, \mu)=\mathbf{0}$. Then, $\boldsymbol{z}(\mu)=\boldsymbol{\Gamma}(t ; T, \mu)$ is obtained for μ small enough as the function such that $\mathcal{F}(\boldsymbol{z}(\mu), \mu)=\mathbf{0}$ and $\boldsymbol{z}(0)=\boldsymbol{z}_{0}$.

The implicit function theorem tells that $\boldsymbol{z}(\mu)$ satisfies the following differential equation defined in X_{1} :

$$
\begin{equation*}
\frac{d \boldsymbol{z}}{d \mu}=-D \mathcal{F}^{-1}(\boldsymbol{z}, \mu) \cdot \mathcal{F}_{\mu}(\boldsymbol{z}, \mu) \tag{5}
\end{equation*}
$$

where $\mathcal{F}_{\mu}(\boldsymbol{z}, \mu)$ is the Fréchet derivative of \mathcal{F} with respect to μ. The linear operator $D \mathcal{F}(\boldsymbol{z}, \mu)$ has the block tridiagonal form. MacKay and Aubry proved a lemma that if a block tridiagonal operator is invertible then elements of the inverse matrix decay exponentially with distance from the diagonal [6]. The exponential localization of $\boldsymbol{z}(\mu)$ is proved by using a slightly modified version of the lemma.

Acknowledgment

This work was supported by a Grant-in-Aid for Scientific Research (C), No. 22K03451 from Japan Society for the Promotion of Science (JSPS).

References

[1] S. Takeno, K. Kisoda and A. J. Sievers, "Intrinsic localized vibrational modes in anharmonic crystals: stationary modes," Prog. Theor. Phys. Suppl., vol. 94, pp. 242-269, 1988.
[2] A. J. Sievers and S. Takeno, "Intrinsic localized modes in anharmonic crystals," Phys. Rev. Lett., vol. 61, pp. 970-973, 1988.
[3] J. B. Page, "Asymptotic solutions for localized vibrational modes in strongly anharmonic periodic systems," Phys. Rev. B, vol.41, pp.7835-7838, 1990.
[4] S. Flach and A. V. Gorbach, "Discrete breathers Advances in theory and applications," Phys. Rep., vol.467, pp.1-116, 2008.
[5] K. Yoshimura, Y. Doi, and M. Kimura, '"Localized modes in nonlinear discrete systems," in Progress in Nanophotonics 3, M. Ohtsu and T. Yatsui (eds.), Springer, New York, 2014, pp. 119-166.
[6] R. S. MacKay and S. Aubry, "Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators," Nonlinearity, vol.7, pp.1623-1643, 1994.
[7] R. Livi, M. Spicci, and R. S. MacKay, "Breathers on a diatomic FPU chain," Nonlinearity, vol.10, pp.14211434, 1997.
[8] K. Yoshimura, "Existence of discrete solitons in discrete nonlinear Schrödinger equations with non-weak couplings," Japan Jour. Indust. Appl. Math., vol. 33 pp.379-400, 2015.
[9] K. Yoshimura, "Existence of dark solitons in discrete nonlinear Shrödinger equations with non-weak couplings," Japan Jour. Indust. Appl. Math., vol.36, pp.893-905, 2019.
[10] J. F. R. Archilla, J. Cuevas, B. Sánchez-Rey, and A. Alvarez, "Demonstration of the stability or instability of multibreathers at low coupling," Physica D, vol.180, pp.235-255, 2003.
[11] D. E. Pelinovsky, P. G. Kevrekidis, and D. J. Frantzeskakis, "Stability of discrete solitons in nonlinear Schrödinger lattices," Physica D, vol.212, pp.1-19, 2005.
[12] K. Yoshimura, '"Existence and stability of discrete breathers in diatomic Fermi-Pasta-Ulam type lattices," Nonlinearity, vol.24, pp.293-317, 2011.
[13] K. Yoshimura, "Stability of discrete breathers in diatomic nonlinear oscillator chains," Nonlinear Theory and Its Applications, IEICE, vol.3, pp.52-66, 2012.
[14] K. Yoshimura, "Stability of discrete breathers in nonlinear Klein-Gordon type lattices with pure anharmonic couplings," J. Math. Phys., vol.53, 102701, 2012.
[15] D. Pelinovsky and A. Sakovich, "Multi-site breathers in Klein-Gordon lattices: stability, resonances, and bifurcations," Nonlinearity, vol.25, pp.3423-3451, 2012.
[16] J. M. Bergamin, "Numerical approximation of breathers in lattices with nearest-neighbor interactions," Phys. Rev. E, vol.67, 026703, 2003.
[17] S. Flach, "Existence of localized excitations in nonlinear Hamiltonian lattices," Phys. Rev. E, vol.51, pp.1503-1507, 1995.
[18] G. James, "Centre Manifold reduction for quasilinear discrete systems," J. Nonlinear Sci., vol.13, pp.27-63, 2003.
[19] K. Yoshimura, ' ${ }^{\text {Existence and stability of odd and }}$ even parity discrete breathers in Fermi-Pasta-Ulam lattices," SIAM Jour. on Applied Dynamical Systems, vol. 16 pp.2063-2095, 2017.
[20] K. Yoshimura and Y. Doi, "Existence of odd, even, and multi-pulse discrete breathers in infinite Fermi-Pasta-Ulam lattices," Jour. of Diff. Eq., vol. 298 pp.560-608, 2021.

[^0]: ORCID iDs Kazuyuki Yoshimura: © 0000-0002-4329-4999

