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Abstract— Discrete breathers are spatially localized peri-
odic solutions in nonlinear lattices. We have proved the ex-
istence of multi-pulse discrete breathers in strong localiza-
tion regime in one-dimensional infinite Fermi-Pasta-Ulam-
Tsingou (FPUT) lattices with even interaction potentials.
Exponential localization of those discrete breathers also
have been proved. The multi-pulse discrete breather con-
sists of an arbitrary number of the odd-like and/or even-like
primary discrete breathers located separately on the lattice.
The existence of odd and even symmetric single-pulse dis-
crete breathers is included as particular cases.

1. Introduction

Spatially localized excitation can exist ubiquitously in
nonlinear space-discrete dynamical systems, and it has at-
tracted great interest. Takeno at al. found a time-periodic
and spatially localized mode in the Fermi-Pasta-Ulam-
Tsingou (FPUT) lattice based on approximate analytical
calculation [1, 2]. A few years later, a different type of
the localized mode was also found for the FPUT lattice
[3]. The localized mode is called discrete breather (DB) or
intrinsic localized mode. Considerable progress has been
achieved in understanding the nature of DB so far (e.g.,
[4, 5] and references therein).

The DBs are time-periodic and spatially localized so-
lutions of the equations of motion of nonlinear lattices.
From the mathematical point of view, a fundamental issue
is their existence. The first existence proof of DB was given
for the nonlinear Klein-Gordon lattice, based on the anti-
continuous limit [6]. This limit is a useful concept, and
existence proofs based on it have been given for other lat-
tice models [7, 8, 9]. Stability results for DBs also has been
given near the limit [10, 11, 12, 13, 14, 15].

The FPUT lattice is one of the fundamental lattice mod-
els in physics, to which the anti-continuous limit approach
is not applicable. Normalized spatial profiles of two types
of single-pulse DBs, which are called odd and even modes,
are approximately given by (. . . , 0,−1/2, 1,−1/2, 0, . . . )
[1, 2] and (. . . , 0,−1, 1, 0, . . . ) [3] in the regime of strong
localization, respectively. In addition, multi-pulse DBs also
have been found numerically [16].

For the FPUT model, the first existence proof of the odd
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and even DBs was given in a particular case of the homo-
geneous potential [17]. In the more general case of non-
homogeneous potentials, an existence proof was given for
weakly localized odd and even DBs by using a center man-
ifold reduction technique [18]. The existence of strongly
localized odd and even DBs has been proved recently for
finite FPUT lattices [19]. The present theorem is its ex-
tension to the case of infinite FPUT lattices. In addition
to the single-pulse DBs, the theorem ensures the existence
of infinitely many multi-pulse DBs and their exponential
localization.

2. Lattice model

We consider the one-dimensional infinite FPUT lattice
described by the equations of motion

q̇i = pi, ṗi = V ′(qi+1 − qi) − V ′(qi − qi−1), i ∈ Z, (1)

where qi, pi ∈ R are the position and momentum of ith par-
ticle of unit-mass, respectively, and V is a potential func-
tion of the nearest neighbor interaction. Equation (1) forms
an infinite system of ordinary differential equations, which
has the Hamiltonian

H =
∞∑

i=−∞

1
2

p 2
i +

∞∑
i=−∞

V(qi+1 − qi).

Equation (1) is derived by q̇i = ∂H/∂pi and ṗi = −∂H/∂qi.
Let X ∈ R and µ ∈ R be a parameter. We assume the

interaction potential V to be defined by

V(X) = µW(X) +
1
k

Xk, (2)

where:

(P1) k ≥ 4 is an even integer;
(P2) W(X) : R→ R is a C3 function of X;
(P3) W(X) = W(−X) for ∀X ∈ R and W(0) = 0.

Condition (P3) ensures that V(X) is an even function of
X. A typical non-homogeneous potential often used in the
literature is a polynomial potential. Equation (2) reduces to
this case when W is an even polynomial of order less than
k, i.e., W(X) =

∑k/2−1
r=1 κ2rX2r.
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3. Sequence and function spaces

Let l2(Z) be the Hilbert space of square-summable
two-sided real-valued sequences endowed with the norm
∥x∥l2 =

√
⟨x,x⟩, which is derived from the inner product

⟨x,y⟩ = ∑i∈Z xiyi, where x = (xi)i∈Z and y = (yi)i∈Z. Let
q = (qi)i∈Z ∈ l2(Z) and p = (pi)i∈Z ∈ l2(Z). We choose the
phase space of Eq. (1) as Ω = l2(Z) × l2(Z) with the norm

∥z∥Ω =
√
∥q∥2l2 + ∥p∥

2
l2 ,

where z = (zi)i∈Z ∈ Ω and zi = (qi, pi) ∈ R2. The phase
space Ω is also the Hilbert space.

Let C0
T (R;Ω) be the space of T -periodic continuous

functions z(t) : R→ Ω that is endowed with the norm

∥z∥0 = sup
t∈[0,T ]

∥z(t)∥Ω.

Let C1
T (R;Ω) be the space of T -periodic continuously dif-

ferentiable functions z(t) : R → Ω that is endowed with
the norm

∥z∥1 = sup
t∈[0,T ]

∥z(t)∥Ω + sup
t∈[0,T ]

∥ż(t)∥Ω.

Both C0
T (R;Ω) and C1

T (R;Ω) are Banach spaces.
Let X1 ⊂ C1

T (R;Ω) and X0 ⊂ C0
T (R;Ω) be the subspaces

defined by

X1 =
{

(qi(t), pi(t))i∈Z ; qi(−t) = qi(t), pi(−t) = −pi(t),

qi(t + T/2) = −qi(t), pi(t + T/2) = −pi(t), i ∈ Z
}

and

X0 =
{

(si(t), ri(t))i∈Z ; si(−t) = −si(t), ri(−t) = ri(t),

si(t + T/2) = −si(t), ri(t + T/2) = −ri(t), i ∈ Z
}
.

Both X1 and X0 are Banach spaces.
In order to discuss the exponential localization property,

we need to measure the amplitude of each component zi(t)
of a DB solution z(t). Let C1

T (R;R2) be the space of T -
periodic continuously differentiable functions with values
in R2. We define the norm of C1

T (R;R2) as follows:

|z|1 = sup
t∈[0,T ]

|z(t)| + sup
t∈[0,T ]

|ż(t)|,

where z(t) = (q(t), p(t)) ∈ R2 and | · | represents the Eu-
clidean norm of R2. Then, it is a Banach space.

Let b1 ⊂ C1
T (R;R2) be the subspace defined by

b1 =
{

(q(t), p(t)) ; q(−t) = q(t), p(−t) = −p(t),

q(t + T/2) = −q(t), p(t + T/2) = −p(t)
}
.

This space is obtained by imposing C1
T (R;R2) the same

type of temporal symmetries as to those of X1. Each com-
ponent of any z ∈ X1 can be regarded as an element of
b1.

4. Approximation of DB solutions

We describe the odd and even symmetries. Let S O and
S E be the linear mappings S O, S E : Ω→ Ω defined by

S O : (S Oz)i = z−i, i ∈ Z,
S E : (S Ez)i = −z−(i+1), i ∈ Z,

where zi = (qi, pi) and z = (zi)i∈Z ∈ Ω. A T -periodic solu-
tion z(t) ∈ X1 of Eq. (1) is said to have odd (resp. even)
symmetry if it satisfies the condition S Oz(t) = z(t)
(resp. S Ez(t) = z(t)) for ∀t ∈ R. The odd and even sym-
metric solutions have a spatial profile centered at i = 0 site
and that centered between i = −1 and 0 sites, respectively.

Our existence theorem uses approximations for the spa-
tial profiles of DB solutions. Let aO = (aO

i )i∈Z and aE =

(aE
i )i∈Z be two-sided real-valued bounded sequences, each

of which satisfies the condition that there are i1, i2 ∈ Z and
ax

i , 0 only for i1 ≤ i ≤ i2, otherwise ax
i = 0, where the

superscript x represents the sequence type O or E. We will
choose aO and aE as in Table 1 to approximate the odd and
even single-pulse DB profiles in a lattice with µ = 0 and an
even integer k ≥ 4.

Approximations for the profiles of multi-pulse DBs are
constructed by combining aO and/or aE . Given m ∈ Z and
a sequence x = (xi)i∈Z, let Tm be the m-site shift operator
defined by

(Tmx)i = xi−m, i ∈ Z.

Let n ∈ N, x̄ = (x1, . . . , xn) ∈ {O, E}n, θ̄ = (θ1, . . . , θn) ∈
{−1, 1}n, and m̄ = (m1, . . . ,mn) ∈ Zn. Given (x̄, θ̄, m̄), define
the superposition of shifted aO and/or aE as follows:

sx̄,θ̄,m̄ =

n∑
j=1

θ j · Tm ja
x j . (3)

For each Tm ja
x j in the sum, we define its support by

J(Tm ja
x j ) =

{
i ∈ Z ; (Tm ja

x j )i , 0
}
.

This support is a finite set since each of aO and aE has only
a finite number of consecutive nonzero elements. When
J(Tm ja

x j ) = {i1, i1 + 1, . . . , i2}, let J̄(Tm ja
x j ) be the set de-

fined by

J̄(Tm ja
x j ) = J(Tm ja

x j ) ∪ {i1 − 1, i2 + 1},

which is an extended support by adding two adjacent sites
of J(Tm ja

x j ). Using these notations, we define the ex-
tended support of sx̄,θ̄,m̄ by

J̄(sx̄,θ̄,m̄) =
n∪

j=1

J̄(Tm ja
x j ).

– 717 –



5. Main results

Consider the scalar differential equation

ϕ̈ + ϕ k−1 = 0,

where k ≥ 4 is an even integer. Given any T > 0, let ϕ(t; T )
be its T -periodic solution with initial conditions ϕ(0; T ) >
0 and ϕ̇(0; T ) = 0.

Let l1, l2 ∈ Z, l1 ≤ l2 and Dc,r(l1, l2) ⊂ l2(Z) be a closed
convex subset defined by

Dc,r(l1, l2) =
{
x ; |xi| ≤ c for l1 ≤ i ≤ l2, |xi| ≤ cr(k−1)l1−i

for i ≤ l1 − 1, |xi| ≤ cr(k−1)i−l2 for i ≥ l2 + 1
}
,

where c > 0 and 0 < r < 1. This subset Dc,r(l1, l2) is spec-
ified by the four parameters (l1, l2, c, r), and the interval of
xi rapidly (super-exponentially) decreases with increasing
|i| in Dc,r(l1, l2). The existence theorem is stated as follows.
Its proof of the existence part is given in Ref. [20].

Theorem 5.1 Suppose V(X) of Eq. (2) and (P1)-(P3). Fix
the value of k and choose aO = (aO

i )i∈Z, aE = (aE
i )i∈Z, and

(c, r) as in Table 1. Let sx̄,θ̄,m̄ be a superposition given by
Eq. (3) such that J̄(Tmia

xi ) ∩ J̄(Tm ja
x j ) = ϕ for any i , j.

Let l1 = min J̄(sx̄,θ̄,m̄) and l2 = max J̄(sx̄,θ̄,m̄). Then, for any
T > 0, there exists a unique x ∈ Dc,r(l1, l2) such that

Γ0(t; T ) =
(

uiϕ(t; T ), uiϕ̇(t; T )
)
i∈Z

with (ui)i∈Z = sx̄,θ̄,m̄ + x is a T-periodic solution of FPUT
lattice (1) with µ = 0. Moreover, there exist µ0 > 0 and
a family Γ(t; T, µ) of T-periodic solutions of FPUT lattice
(1) for µ ∈ [−µ0, µ0] such that it is a unique continuation
of Γ0(t; T ) in X1 continuous with respect to µ and exponen-
tially localized in space, i.e., there exist K > 0, h > 0, and
ρ ∈ (0, 1) such that components zi(µ) of Γ(t; T, µ) satisfy

|zi(µ)|1 ≤ K exp (h|µ|) ρ|i| (4)

for all i ∈ Z. If sx̄,θ̄,m̄ = aO (resp. aE), then Γ(t; T, µ) has
odd (resp. even) symmetry.

6. Strategy of the proof of Theorem 5.1

The DB solutions of Eq. (1) are formulated as zeros of
the following µ-dependent operator F , i.e., z such that
F (z, µ) = 0.

Definition 6.1 Let F : X1 × R → X0 be the operator de-
fined as follows:

F (z, µ) = w, (z, µ) ∈ X1 × R,

where, denoting z = (qi, pi)i∈Z and w = (si, ri)i∈Z, we have

si = q̇i − pi,

ri = ṗi − V ′(qi+1 − qi) + V ′(qi − qi−1),

with V given by Eq. (2).

k = 4

aO
0 = 0.3762, aO

±1 = −0.1968,
aO
±2 = 0.00867, aE

0 = −aE
−1 = 0.32301,

aE
1 = −aE

−2 = −0.053551,
aO,E

i = 0 (otherwise)
(c, r) = ( 0.0015, 0.02 )

k = 6

aO
0 = 0.50566, aO

±1 = −0.25391,
aO
±2 = 0.00108, aE

0 = −aE
−1 = 0.4166,

aE
1 = −aE

−2 = −0.015, aO,E
i = 0 (otherwise)

(c, r) = ( 1.2 × 10−4, 9 × 10−4 )

k = 8

aO
0 = 0.55502, aO

±1 = −0.27764,
aE

0 = −aE
−1 = 0.44484,

aE
1 = −aE

−2 = −0.00365, aO,E
i = 0 (otherwise)

(c, r) = ( 2 × 10−4, 8 × 10−4 )

k = 10

aO
0 = 0.58111, aO

±1 = −0.29057,
aE

0 = −aE
−1 = 0.45839,

aE
1 = −aE

−2 = −9.1 × 10−4,
aO,E

i = 0 (otherwise)
(c, r) = ( 3 × 10−5, 2 × 10−4 )

k = 12
aO

0 = 0.59730, aO
±1 = −0.29865,

aE
0 = −aE

−1 = 0.46649, aO,E
i = 0 (otherwise)

(c, r) = ( 4 × 10−4, 9 × 10−4 )

k ≥ 14

aO
0 = 2 × 3−(k−1)/(k−2), aO

±1 = −3−(k−1)/(k−2),
aE

0 = −aE
−1 = (1 + 2k−1)−1/(k−2),

aO,E
i = 0 (otherwise)

(c, r) = ( 3 (1 + 2k−1)−(k−1)/(k−2), 1 × 10−3 )

Table 1

We outline our proof of existence of the DB solution
Γ(t; T, µ). The proof consists of two steps. In the first
step, we consider the homogeneous potential FPUT lattice
which is described by Eq. (1) with the potential V(X) =
Xk/k, i.e., µ = 0 in Eq. (2). In this particular lattice, it is
possible to find a DB solution in the form q = uϕ(t; T ),
where u = (ui)i∈Z ∈ l2(Z) is a time-independent constant
vector describing the spatial profile of the solution. Given
an approximate profile sx̄,θ̄,m̄, the vector u is determined
by solving a set of infinite algebraic equations in a neigh-
borhood of sx̄,θ̄,m̄ with use of Banach’s fixed point theo-
rem. The obtained solution is Γ0(t; T ). That is, we have
F (z0, 0) = 0, where z0 := Γ0(t; T ). In the second step,
we consider the non-homogeneous potential FPUT lattice,
i.e., µ , 0 in Eq. (2). Let DF (z, µ) be the Fréchet deriva-
tive of F (z, µ) with respect to z. It is possible to prove
that DF (z, µ) is invertible at (z0, 0). The solution z0 is
uniquely continued to a non-homogeneous potential lattice
for small µ , 0 in X1 by applying the implicit function the-
orem to F (z, µ) = 0. Then, z(µ) = Γ(t; T, µ) is obtained
for µ small enough as the function such that F (z(µ), µ) = 0
and z(0) = z0.

– 718 –



The implicit function theorem tells that z(µ) satisfies the
following differential equation defined in X1:

dz
dµ
= −DF −1(z, µ) · Fµ(z, µ), (5)

where Fµ(z, µ) is the Fréchet derivative of F with respect
to µ. The linear operator DF (z, µ) has the block tridiag-
onal form. MacKay and Aubry proved a lemma that if a
block tridiagonal operator is invertible then elements of the
inverse matrix decay exponentially with distance from the
diagonal [6]. The exponential localization of z(µ) is proved
by using a slightly modified version of the lemma.
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