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Abstract— Effective structure of neuronal networks is in-
ferred from firing data using Expectation-Maximization
(EM) in conjunction with the inverse Ising model. We
demonstrate that our algorithm infers the effective con-
nectivity, neuronal cell-type and coupling strength using
controllable synthetic and emulator data. Furthermore, we
show that the neural activity predictions obtained using the
inferred structures have a good fit with the original data.

1. Introduction

Structured in-vitro cortical brain tissues have attracted
increasing attention in recent years as a promising tool
for biological computation. For example, cortical brain
organoids have been used as processing units for non-linear
curve prediction [1] and cortical neural networks have been
utilized for decision-making in a simulated gaming envi-
ronment [2]. These applications are based on the assump-
tion that plasticity and learning occur in cortical neural
networks, in the form of topological changes and synap-
tic strength modifications, allowing the network to evolve
into a structure capable of performing specific tasks with
appropriate stimulation. It is essential to develop a tool that
can reveal the emerging effective cortical network structure
to understand the mechanism behind biological computing
devices. Although there are some existing studies that of-
fer principled methods for inferring the effective structure
of cortical neural networks from their activities, they all
have certain limitations.

Commonly used techniques for identifying effective
connections, such as measuring transfer entropy [3], are
strongly affected by the sparsity of firing rates and the
need to set an appropriate threshold for identifying the ex-
istence of connections, both of which can be somewhat
heuristic. Statistical physics-based techniques have been
developed for inferring the underlying directional interac-
tion strengths between neurons, including the mapping of
neural activities onto the kinetic Ising model with infer-
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ence using mean-field approximation [4]. However, these
methods are based on unrealistic assumptions, such as that
the network is fully connected and synaptic strengths are
uniform and Gaussian distributed with a small variance.
Moreover, a principled technique for identifying excitatory
and inhibitory connections, the existence of links between
neurons and taking structural considerations into account is
still lacking.

In this work, we have developed an algorithm to infer the
structure of biological neural networks from firing patterns
using Bayesian techniques, machine learning methods and
models from statistical physics.

2. Method

To infer the structure of neural networks, we use the ki-
netic Ising model of statistical physics to represent the un-
derlying interaction between binary spike activities. This
non-equilibrium probabilistic model is a discrete-time,
where the N system neurons are denoted by discrete vari-
ables S i(t) = ±1 when neuron i is spiking or silent at time
step t, respectively, for i = 1, . . . ,N. The transition proba-
bility of neurons at time t is given by

P(S(t)|S (t−1))=
N∏

i=1

exp
[(

hi+
∑

j Ji jS j(t−1)
)

Si(t))
]

2 cosh
(
hi+
∑

j S j(t−1)
) , (1)

where the coupling strength Ji j represents the directional
synaptic strength from neuron j to i. A negative (posi-
tive) value of Ji j suggests that j sends inhibitory (excita-
tory) signals to i when j spikes. Using the probabilistic
model defined by the binary spiking activity data D and
the imposed prior distribution P, we can define the poste-
rior probability P(J,H|D,P) and infer the magnitudes of
J (cross-neuron interactions - directional synaptic links),
and H (external field - firing properties of the individual
neuron), directional connectivity and neuronal cell type by
employing an Expectation-Maximization (EM) supported
framework. Additionally, we can use Monte-Carlo simu-
lations to predict neural activities by inserting the inferred
variables back into Eq. 1.
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Figure 1: The panels (a), (b), and (c) illustrate the results by comparing the true and estimated values of the firing
rate ⟨S i (t)⟩, equal-time covariance

〈
S i (t) S j (t)

〉
, and delayed-time covariance

〈
S i (t) S j (t − 1)

〉
, respectively, using the

EM-inferred structure from data generated by a synthetic kinetic Ising model with a system size of N = 20 (angled
brackets represent expectation values). On the other hand, the panels (d), (e), and (f) show the results of comparing the
true and estimated values for the firing rate ⟨S i (t)⟩, delayed-time covariance

〈
S i (t) S j (t − 1)

〉
, and equal-time covariance〈

S i (t) S j (t)
〉
, respectively, using the EM-inferred structure and Maximum Likelihood Estimation (MLE) from data gen-

erated by a dedicated neural activities emulator with N = 20 neurons.

3. Results

Our method has been tested on in-silico experiments us-
ing both synthetic data generated from the kinetic Ising
model and neural activity emulator data that accurately
simulates realistic scenarios. For the synthetic data, the
system consists of 20 spins, and unlike conventional se-
tups, we assume that the spins are sparsely connected and
the coupling strength follows a mixture of 2 Gaussian dis-
tributions with positive and negative means (excitatory and
inhibitory neurons, respectively). On the other hand, the
emulator simulation consists of 20 neurons randomly dis-
tributed on a square panel, and the ratio between inhibitory
and excitatory neurons is 2:8. The network connectivity
and activities are first simulated based on [5]. Then, only
binary spiking activities are used for the inference. As
shown in Fig. 1, the predicted activities have a good simi-
larity with both the synthetic and emulator data.

4. Discussion

By obtaining reliable effective connectivity of neural net-
works and predicting neuronal activities in silico, we can
greatly reduce waiting times and improve the efficiency of
in vitro experiments, leading to a better understanding of
their physical properties. Furthermore, this approach can
provide insights and a quantitative understanding of learn-
ing properties in cortical tissues in future studies.
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