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Abstract—We consider the relaxation oscillator which
contains time-variant threshold. The time-variant threshold
is driven by a square wave external force. We analyze syn-
chronization phenomena of the system against the external
force. We clarify that the synchronization phenomena are
depended on the value of the threshold.

1. Introduction

Synchronization phenomena can be observed universally
in nature, also they are very interesting phenomena. For ex-
ample, we can observe a phase synchronization behavior in
Southeast Asian fireflies [1]. A circadian rhythm is one ex-
ample of such synchronization phenomena. The circadian
rhythm is that plants and animals are driven by the solar
cycle. The population synchronization behavior caused by
a common external force has also been reported [2].

These synchronization phenomena can be simulated by
using various oscillator systems. Various kinds of oscillator
systems have been proposed. In this article, we pay atten-
tion to a relaxation oscillator since the structure of the sys-
tem is simple and the behavior can be analyzed rigorously.
For such relaxation oscillator systems, the synchronization
phenomena of the coupled relaxation oscillators have been
analyzed [3][4]. Kohari et.al. have been analyzed the char-
acteristic of the attractors when the system is driven by an
external force [5]. In this article, we pay attention to the
following relaxation system[6][7].

d
dt

x(t) = −x(t) + y(t) (1)

y(t) = h(t, x(t)) =

1 x(t) < S(t)

−1 x(t) >W(t)
(2)

,wherex(t) denotes a state variable of the relaxation oscil-
lator, y(t) denotes an output.h(t, x(t)) represents a bipolar
hysteresis as shown in Fig. 1. The threshold of the bipolar
hysteresis is driven by a square waveform as described by

Figure 1: Hysteresis functionh(t, x)

Eqs. (3), (4), (5) and (6).

S(t) =

h = α + β 0 ≤ t < T
2

l = α − β T
2 ≤ t < T

(3)

W(t) =

−l = −α + β 0 ≤ t < T
2

−h = −α − β T
2 ≤ t < T

(4)

S(t + T) = S(t) (5)

W(t + T) =W(t) (6)

,whereα means an original threshold of the relaxation os-
cillator. β andT denote an amplitude of the square wave
and a period, respectively.

Namely, the threshold of the bipolar hysteresis is varied
alternately by the external force.

2. Definition of return map

In order to analyze the dynamics of the relaxation oscil-
lator system with the square wave external force, we derive
a return map from the system. The output of this system
is switched when the state variable hits the threshold. The
switching points on the threshold region which can be clas-
sified into three intervalsI0, I1 andI2 as shown in Fig. 2(b).

I0 = {(t, x)|0 ≤ t < T/2, x = h}
I2 = {(t, x)|t = T/2, l < x ≤ h}
I1 = {(t, x)|T/2 ≤ t ≤ T x= l}

(7)
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These intervals are described as

g(t, x(t)) =


1
L t 0 ≤ t < T

2 , x(t) = h
1
L (t + h− x(t)) t = T

2 , l ≤ x(t) ≤ h
1
L (t + h− l) T

2 ≤ t < T, x(t) = l

(8)

L = T + h− l (9)

Note that the domain has a periodic property described as

g(t, x) = g(t + T, x) (10)

g(t, x) = g(t +
T
2
,−x) (11)

We normalize this domain into the [0,1] interval. By using
this normalized domain, we define a return map.

The relation between any initial value (t0, x0) ∈ I0∪I1∪I2

and the corresponding switching point (t1, x1) is given as
the followings:

(t1, x1) = f (t0, x0) (12)

=



(tl ,−l) t0 < tl andtl modT < T/2
(th,−h) t0 < tl andtl modT > T/2

andth modT > T/2
andth − tl < T/2
or t0 > tl andth modT > T/2
andth − t0 < T/2

(tv, z) ofhterwise

(13)

tl = t0 + ln((1+ x0)/(1− l)) (14)

th = t0 + ln((1+ x0)/(1− h)) (15)

tv =

T − (tl modT) + tl t0 < tl
T − (t0 modT) + t0 t0 > tl

(16)

z= (1− l) exp(−tv) − 1 (17)

Using above relationship, we define a return map to analyze
the dynamics of the system.

Xn+1 = F(Xn) (18)

F = g · f · g−1 : [0,1]→ [0, 1] (19)

2.1. Switching Ratio

The system contains various kinds synchronization phe-
nomena for external forces. In order to classify such syn-
chronization phenomena, we apply a switching ratioγ
which is defined as the following.

γ =
the number of switchings ofh(t, x)
the number of switchings ofS(t)

(20)

This switching ratio denotes the ratio of the number of
switching times of the oscillator to the number of switching
times of the external force.

(a) Switching area

(b) (tn, xn) series

Figure 2: State of the switching

2.2. Symbol Series

In order to classify the periodic time series of the output,
we define a symbol series. First, the domain of the return
map is consisted of three regions. We assign each region
to a symbol which is expressed by ternary numeral as the
follow.

ω(Xn) =


0 Xn ∈ F(I0)

1 Xn ∈ F(I1)

2 Xn ∈ F(I2)

(21)

By using the expression of Eq. (21), any periodic time se-
ries is expressed by the ternary numeral symbol series.

3. Analysis

In this article, we pay attention to the case where the pe-
riod of the external force is long. Specifically, we consider
the case where the following condition is satisfied.

2 ln((1+ l)/(1− l)) < T (22)

As parameters are satisfied the condition (22), we analyze
the switching rateγ by numerical simulations in the case
where the amplitudeβ and the period T of the external
force are varied. Figures 3 and 4 represent the numerical
simulation results. Figure 3 shows the result of the case of
α = 0.5, and Fig. 4 shows the result of the case ofα = 0.4.
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Figure 3:α = 0.5

Figure 4:α = 0.4

In these figures, the horizontal axis denotes the normalized
frequency which is normalized by the oscillation frequency
of β = 0.0. Each color corresponds to the switching ratio.
These results exhibit complicated structure of the synchro-
nization. In the case of Fig. 4,β = 0.4 is a critical pa-
rameter value for the classification of the synchronization
phenomena. This critical point is due to a phenomenon
varies depending on the sign of the parameterl. Such trend
is not observed in the result of Fig. 3.

3.1. 1:1 Schronization

In this subsection, we consider the case where the output
is synchronized with 1:1 against the external force. This
situation corresponds to the state ofγ = 1.0. In this case,
the period of the relaxation oscillator is equivalent to the
period of the external force. Figure 5 shows an example
waveform of the oscillation. The phenomena can be ob-

1

y(t) 0

−1
−h

−l

x(t) 0

l

h

0 2 4 6 8

t

Figure 5: Examples of oscillation waveform
α = 0.5, β = 0.2, T = 3.0

served when the following conditions are satisfied.

Ta < T < Tb (23)

Ta =

2 ln
(

1+l
1−l

)
0 < l

0 l ≤ 0
(24)

Tb =

2 ln
(

1+h
1−h

)
h < 1

∞ 1 ≤ h
(25)

The synchronization region is given by the values ofl and
h. The lower limit periodTa is depended on the parameterl,
and the upper limit periodTb is depended on the parameter
h. If the parameterl becomes a small, the lower limit period
Ta becomes a short. If the parameterh becomes a large, the
upper limit periodTb becomes a long. Ifl is smaller than 0,
the short period must be synchronized. On the other hand,
if h is larger than 1, the long period must be synchronized.
Namely, in the case ofl < 0 andh > 1, the system is
synchronized to arbitrary periodT of the external force.

3.2. {2(01)m} Synchronization

In this subsection, we consider the case where the sys-
tem exhibits 2(01)m synchronization. The time series of the
synchronization attractor corresponds to the ternary sym-
bol expression 2(01)m. In this case, the switching rateγ is
given as the following.

1
γ
=

1
2m+ 1

(26)

This synchronization patterns is one of the typical oscilla-
tion pattern when the period of the external force is long.
The synchronization region is different on the sign of the
parameterl.
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Figure 6: Examples of oscillation waveform
α = 0.2, β = 0.35, T = 4.0

3.2.1. l≤ 0 < h < 1

If l ≤ 0 < h < 1 is satisfied, the switching point in the
interval I2 is greater than−l, and smaller thanh. In this
case, the system oscillates as shown in Fig. 6. Figure 6
indicates that the switching point is existed in the interval
I2 every half period. Therefore, the system emerges 2(01)m

synchronization only if the following conditions are satis-
fied.

l ≤ 0 < h < 1 (27)

T′c,m < T < T′d,m (28)

T′c,m = 2mln

(
1+ h
1− h

)
+ 2(m− 1) ln

(
1+ l
1− l

)
(29)

T′d,m = 2(m+ 1) ln

(
1+ h
1− h

)
+ 2mln

(
1+ l
1− l

)
(30)

In this case,T′d,m = T′c,m+1 is satisfied. This synchronization
region becomes wide whenα is small. This situation is
corresponded to the region ofβ > 0.4 in Fig. 4.

3.2.2. 0 < l < h < 1

If 0 < l < h < 1 is satisfied, the switching point in the
intervalI2 is greater thanl, and smaller thanh. An example
of the oscillation waveform is shown in Fig. 7. In this case,
the condition of 2(01)m synchronization is described as the
followings:

0 < l < h < 1 (31)

Tc,m < T < Td,m (32)

Tc,m = 2mln

(
1+ h
1− h

)
+ 2(m+ 1) ln

(
1+ l
1− l

)
(33)

Td,m = 2(m+ 1) ln

(
1+ h
1− h

)
+ 2mln

(
1+ l
1− l

)
(34)

1
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Figure 7: Examples of oscillation waveform
α = 0.2, β = 0.1, T = 4.0

In this case,T′d,m < T′c,m+1 is satisfied.

4. Conclusions

We considered the relaxation oscillator which contains
time-variant threshold. The time-variant threshold is driven
by the square wave external force. We analyzed syn-
chronization phenomena of the system against the external
force. In this article, we paid attention to the case where
the external force has long period.

Consequently, we clarified that the synchronization phe-
nomena is depended on the value of the threshold.
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