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Abstract—We consider the relaxation oscillator which h(t,x)
contains time-variant threshold. The time-variant threshold A
is driven by a square wave external force. We analyze syn- 1
chronization phenomena of the system against the external A ]
force. We clarify that the synchronization phenomena are ' :
depended on the value of the threshold. W(t) ; : S(t)

: 0 : >

1. Introduction -1

o . Figure 1: Hysteresis functio(t, X
Synchronization phenomena can be observed universally 9 y an(t, )

in nature, also they are very interesting phenomena. For ex-
ample, we can observe a phase synchronization behaviorl-:i s. (3). (4). (5)and (6
Southeast Asian fireflies [1]. A circadian rhythm is one ex-Ial 3. @, ) ©).

ample of such synchronization phenomena. The circadian h=a+p O<t<]
rhythm is that plants and animals are driven by the solar S(t) = { B T 2 (3)
cycle. The population synchronization behavior caused by l=a-p 5<t<T
a common external force has also been reported [2]. ® —l=-a+p 0<t< % @
W(t) = B 4
These synchronization phenomena can be simulated by ~h=-a-B F<t<T

using various oscillator systems. Various kinds of oscillator S(t+T) = S(t) (5)
systems have been proposed. In this article, we pay atten- W(t +T) = W(1) ©6)
tion to a relaxation oscillator since the structure of the sys- h
tem is simple and the behavior can be analyzed rigorousl)év

. ) .~ Avherea means an original threshold of the relaxation os-

For such relaxation oscillator systems, the synchronizatidn, .
. : cillator. B andT denote an amplitude of the square wave
phenomena of the coupled relaxation oscillators have been : .
and a period, respectively.

analyzed [3][4]. Kohari et.al. have been analyzed the char-\ o\ e threshold of the bipolar hysteresis is varied

acteristic of the attractors when the system is driven by a&ﬂ ternatelv by the external force
external force [5]. In this article, we pay attention to the yoy '

following relaxation system[6][7].
2. Definition of return map

Ex(t) = —x(t) + y(t) (1) In order to a.nalyze the dynamics of the relaxation osc_il—
dt lator system with the square wave external force, we derive
_h 1 x(®) < S() a return map from the system. The output of this system

y(t) = h(t. x(1) = -1 x(t) > W() (@) js switched when the state variable hits the threshold. The

switching points on the threshold region which can be clas-
sified into three intervalk, |; andl, as shown in Fig. 2(b).

,wherex(t) denotes a state variable of the relaxation oscil-

lator, y(t) denotes an outputi(t, x(t)) represents a bipolar { lo={(t,)I0<t<T/2, x=hj

= {(t,XIt=T/2 | <x<h @)

hysteresis as shown in Fig. 1. The threshold of the bipolar
I ={t,XIT/2<t<T x=1}

hysteresis is driven by a square waveform as described by
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These intervals are described as A

T
1t 0O<t<I, xt)=h L Iy
gt x() =< Lt+h-x(®) t=2,1<xt)<h (8) I I
Lt+h-1) T<t<T xt)=I I — // ;
L=T+h-1 9) \\ >
. o : -1 \
Note that the domain has a periodic property described as 2 I
_h_ I
ot. %) = ot + T.%) (10) fo
T (a) Switching area
g(t’ X) = g(t + E’ _X) (ll)
A
We normalize this domain into the [0,1] interval. By using x(to,xo) (to2,x2)
this normalized domain, we define a return map. /
The relation between any initial valug,(xo) € loUI1Ul2 h Ote 0
and the corresponding switching poirtt, ;) is given as |
the followings: ! /' 1 "
-
(tr, 1) = f(to, %) (12) 1
(t,-1) to <t andt modT < T/2 -l /v 1 —
(th, =) to <t andty modT > T/2 By N— i
andt, modT > T/2 0 (t1,:B1) 0
= andt, -t < T/2 (13) .
orto >t andt, modT > T/2 (0) tn. xn) series
andt —to < T/2 Figure 2: State of the switching
(tv,2) ofhterwise
t=to+In((1+ x0)/(1-1)) (14) 25 Svmbol Seri
th = to + In((L+ %0)/(1 - ) (15) =5 SYMROTSENEs
To(tmodT)+t to<t In orQer to classify thg periqdic time serieg of the output,
ty = T (tomodT) +t to >t (16)  we define a symbol series. First, the domain of the return
0 0 o~ map is consisted of three regions. We assign each region
z=(1-1exptty) -1 (17)  to a symbol which is expressed by ternary numeral as the
follow.
Using above relationship, we define a return map to analyze 0 XneF(lo)
the dynamics of the system. W) =41 Xn e F(ly) (21)
Xor1 = F(%o) (18) 2 XacFll)
F=g-f-g*:[0,1] - [0,1] (19) By using the expression of Eq. (21), any periodic time se-

ries is expressed by the ternary numeral symbol series.

3. Analysis

2.1. Switching Ratio . . :
In this article, we pay attention to the case where the pe-

The system contains various kinds synchronization pheiod of the external force is long. Specifically, we consider
nomena for external forces. In order to classify such syrhe case where the following condition is satisfied.
chronization phenomena, we apply a switching ratio
which is defined as the following. 2In((A+0)/(1-1))<T (22)

the number of switchings df{t, x) As parameters are satisfied the condition (22), we analyze
the number of switchings @&(t) (20)  the switching ratey by numerical simulations in the case
where the amplitudg and the period T of the external
This switching ratio denotes the ratio of the number oforce are varied. Figures 3 and 4 represent the numerical
switching times of the oscillator to the number of switchingsimulation results. Figure 3 shows the result of the case of
times of the external force. a = 0.5, and Fig. 4 shows the result of the caseof 0.4.

’y:
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Figure 5: Examples of oscillation waveform
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02 Ta<T<Ty (23)
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Figure 4:a = 0.4 00 1<h

The synchronization region is given by the value$ ahd
h. The lower limit periodT, is depended on the paramelter

In these figures, the horizontal axis denotes the normaliz crj]d the upper limit period, is depended on the parameter

f o . - . If the parametelrbecomes a small, the lower limit period
requency which is normalized by the oscillation frequenc becomes a short. If the paramedrecomes a large. the
of 8 = 0.0. Each color corresponds to the switching ratio. & ' P g€,

o . ipper limit periodT, becomes a long. Ifis smaller than 0,
These results exhibit complicated structure of the synchr e short period must be synchronized. On the other hand,

nization. In the case of Fig. 4 = 0.4 is a critical pa- ., . . .
rameter value for the classification of the synchronizatiolpiI his Iarger than 1, the long period must be synchron!zed.
namely, in the case df < 0 andh > 1, the system is

phenomena. This critical point is due to a phenomeno . ) .
varies depending on the sign of the paramket&uch trend synchronized to arbitrary period of the external force.

is not observed in the result of Fig. 3. o
3.2. {2(01)"} Synchronization

In this subsection, we consider the case where the sys-
tem exhibits 2(01Y synchronization. The time series of the
synchronization attractor corresponds to the ternary sym-
bol expression 2(01 In this case, the switching rajeis

3.1. 1:1 Schronization given as the following.

i1 (26)

In this subsection, we consider the case where the output y T om+ 1

is synchronized with 1:1 against the external force. This

situation corresponds to the stateyof 1.0. In this case, This synchronization patterns is one of the typical oscilla-
the period of the relaxation oscillator is equivalent to the¢ion pattern when the period of the external force is long.
period of the external force. Figure 5 shows an exampl€he synchronization region isftirent on the sign of the
waveform of the oscillation. The phenomena can be olparametet.
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Figure 6: Examples of oscillation waveform Figure 7: Examples of oscillation waveform
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321 1£0<h<1 In this caseT} ,, < T, is satisfied.

If | <0 < h < 1is satisfied, the switching point in the .
interval I, is greater than-l, and smaller tham. In this 4= Conclusions

_ce:jsg, tthetﬁyft;m os?llﬁtes as. sthown_lr: Z'g' t?]. F?ure 6We considered the relaxation oscillator which contains
Indicates tha .e switching pointis existed in the in erVal!ime-variant threshold. The time-variant threshold is driven
I every half period. Therefore, the system emerges 2‘(01)Oy the square wave external force. We analyzed syn-

synchronization only if the following conditions are sat's'chronization phenomena of the system against the external

fied. force. In this article, we paid attention to the case where
l<0<h<1 (27) the external force has long period.
Tom<T <Th (28) Consequently, we clarified that the synchronization phe-

o Lal nomena is depended on the value of the threshold.
h)+2(m— 1)In(1—i|) (29)

1
Tim = 2m|n(1+
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